Subscribe to our free daily newsletters
. Earth Science News .




Subscribe to our free daily newsletters



ABOUT US
How the brain consolidates memory during deep sleep
by Staff Writers
Riverside CA (SPX) Apr 20, 2016


File image.

Research strongly suggests that sleep, which constitutes about a third of our lives, is crucial for learning and forming long-term memories. But exactly how such memory is formed is not well understood and remains, despite considerable research, a central question of inquiry in neuroscience.

Neuroscientists at the University of California, Riverside report this week in the Journal of Neuroscience that they now may have an answer to this question. Their study provides for the first time a mechanistic explanation for how deep sleep (also called slow-wave sleep) may be promoting the consolidation of recent memories.

During sleep, human and animal brains are primarily decoupled from sensory input. Nevertheless, the brain remains highly active, showing electrical activity in the form of sharp-wave ripples in the hippocampus (a small region of the brain that forms part of the limbic system) and large-amplitude slow oscillations in the cortex (the outer layer of the cerebrum), reflecting alternating periods of active and silent states of cortical neurons during deep sleep. Traces of episodic memory acquired during wakefulness and initially stored in the hippocampus are progressively transferred to the cortex as long-term memory during sleep.

Using a computational model, the UC Riverside researchers provide a link between electrical activity in the brain during deep sleep and synaptic connections between neurons. They show that patterns of slow oscillations in the cortex, which their model spontaneously generates, are influenced by the hippocampal sharp-wave ripples and that these patterns of slow oscillations determine synaptic changes in the cortex. (Change in synaptic strength is widely believed to underlie learning and memory storage in the brain.)

The model shows that the synaptic changes, in turn, affect the patterns of slow oscillations, promoting a kind of reinforcement and replay of specific firing sequences of the cortical neurons - representing a replay of specific memory.

"These patterns of slow oscillations remain even without further input from the hippocampus," said Yina Wei, a postdoctoral researcher and the first author of the research paper. "We interpret these results as a mechanistic explanation for the consolidation of specific memories during deep sleep, whereby the memory traces are formed in the cortex and become independent of the hippocampus."

Wei explained that according to the biologically realistic network model the researchers used, input from the hippocampus reaches the cortex during deep sleep and influences how the slow oscillations are initiated and propagated in the cortical network.

"Input from the hippocampus - the sharp-wave ripples - determines the spatial and temporal pattern of these slow oscillations," she said. "By influencing the nature of these oscillations, this hippocampal input activates selective memories during deep sleep and causes a replay of specific memories. During such memory replay, the corresponding synapses are strengthened for long-term storage in the cortex. These results suggest the importance of the hippocampal sharp-wave ripple events in transferring memory information to the cortex."

Normal sleep, during which brain activity remains high, is made up of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. NREM and REM sleep alternate in each of the 4-5 cycles during an eight-hour sleep period. Each cycle consists of NREM sleep followed by REM sleep, and roughly lasts 90-110 minutes. NREM sleep has three stages, Stage 3 being deep sleep. Deep sleep, which makes up at least 20 percent of a person's total sleep time, occurs mostly in the first third of the night.

"In our model, even weak and spatially localized input from the hippocampus influenced the spatiotemporal pattern of slow oscillations and led to a persistent change of synaptic efficacy between neurons," Wei said. "Further, our model makes predictions that can be tested experimentally, including specific interventions to suppress or augment memory consolidation processes."

Wei was joined in the research by Giri P. Krishnan, a postdoctoral researcher, and Maksim Bazhenov, a professor of cell biology and neuroscience. Wei and Krishnan work in Bazhenov's lab. Next, the group will work on how memory improvement is associated with Stage 2 NREM sleep, and investigate whether Stage 2 NREM sleep before Stage 3 NREM sleep (deep sleep) is critical for successful memory consolidation.

Study results appear in the Journal of Neuroscience.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of California - Riverside
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ABOUT US
Are humans the new supercomputer
Aarhus C, Denmark (SPX) Apr 18, 2016
The saying of philosopher Rene Descartes of what makes humans unique is beginning to sound hollow. 'I think - therefore soon I am obsolete' seems more appropriate. When a computer routinely beats us at chess and we can barely navigate without the help of a GPS, have we outlived our place in the world? Not quite. Welcome to the front line of research in cognitive skills, quantum computers and gam ... read more


ABOUT US
Aid groups rush to quake-hit Ecuador, families still trapped

Japan opens prison to shelter quake evacuees

Chernobyl zone turns into testbed for Nature's rebound

Japan battles to care for 100,000 evacuees after quake

ABOUT US
Chinese scientists succeed in micro-g 3D printing test

Topology explains queer electrical current boost in non-magnetic metal

Researchers discover liquid spiral vortex

Elusive state of superconducting matter discovered after 50 years

ABOUT US
Chemical weathering controls erosion rates in rivers

First signs of coral bleaching in Sydney Harbour: scientists

Kayakers protest Balkans 'dam tsunami' in lake paddle

Gripped by drought, Ethiopia drills for water

ABOUT US
Ice streams can be slowed down by gas hydrates

Satellite images reveal dramatic tropical glacier retreat

Heat wave triggers Greenland's ice melting season two months early

Twentieth century warming allowed moose to colonize the Alaskan tundra

ABOUT US
China wields increasing power in world wine market: study

Australia's biggest cattle firm says China-led bid preferred

Spreading seeds by human migration

Rising CO2 levels reduce protein in crucial pollen source for bees

ABOUT US
Japanese map tracks the last moments of the victims of 2011 tsunami

Bubbles lead to disaster

Mexico volcano spits ash on towns

Texas floods kill at least five: report

ABOUT US
South Sudan rebel homecoming fails again

South Sudan rebel chief's return delayed

Ivory trucks arrive in Kenyan capital for mass burning

Two Somalia drone strikes kill about 12 militants: US

ABOUT US
Are humans the new supercomputer

Brain observed filing memories during sleep

Study: Some words sound farther away than others

Study: Electrical brain stimulation enhances creativity




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement