Subscribe free to our newsletters via your
. Earth Science News .

Subscribe free to our newsletters via your

How the brain detects short sounds
by Staff Writers
Salt Lake City UT (SPX) Mar 17, 2016

University of Utah researchers used leopard frogs like the one shown here to measure tiny voltages from single brain cells and learn how those cells learn to detect short sounds. Distinguishing short sounds from longer sounds is essential for humans to understand each other's speech and for animals to recognize each other's calls. Image courtesy Lee J. Siegel, University of Utah. For a larger version of this image please go here.

For humans to understand speech and for other animals to know each other's calls, the brain must distinguish short sounds from longer sounds. By studying frogs, University of Utah researchers figured out how certain brain cells compute the length of sounds and detect short ones.

In addition to pitch and loudness, "sound duration is of universal importance," says biology professor Gary Rose, senior author of the study published by the journal Proceedings of the National Academy of Sciences. "It's important in frogs. It's important to humans. It's important to all animals that use sound to communicate."

Researchers long ago discovered that different neurons or nerve cells in the brain "selectively respond to sounds of a certain duration," he says. "But we didn't know until now how they computed the lengths of sounds."

Rose and neuroscience doctoral student Rishi Alluri used a novel combination of recording electrical activity of single brain cells and blocking neurotransmitter chemicals that carry nerve signals from one nerve cell or neuron to the next. It was already known that short sounds are discriminated from longer sounds by individual brain cells in the inferior colliculus, the auditory part of the midbrain.

The researchers found that for a frog brain cell to recognize a short sound, it is inhibited from firing a nerve signal while the sound is occurring, then is excited into firing when the sound ends. For longer sounds, the cell is inhibited for a longer time and that counteracts the excitation, so the cell doesn't respond to longer sounds.

"This integration of excitation and inhibition in the brain is a critical component of the ability to distinguish between communication sounds," Rose says.

For example, without this mechanism, people wouldn't be able to distinguish that the first syllable is shorter than the second in a word such as "papa" [sounds like pa-pah], says Alluri, the study's first author.

When this process goes wrong, the result can be disorders in speech recognition, such as when older people have trouble recognizing speech even when hearing aids amplify incoming sounds.

"It is believed that age-related deterioration in speech recognition is, to a large degree, a consequence of imbalances in excitation and inhibition of neurons involved in hearing," Rose says. "You can fit people with hearing aids that amplify the sounds, but they still have trouble with speech recognition because of processes in the brain."

The bigger picture, he adds, is learning how a limited number of nervous system components help us understand what we hear, just as a limited number of piano keys in a single octave can produce a vast number of melodies.

The study was funded by the National Institute on Deafness and Other Communications Disorders. Rose and Alluri conducted the research with University of Utah biology postdoctoral fellows Jessica Hanson and Christopher Leary, research specialist Gustavo Vasquez-Opazo, undergraduate and technician Jalina Graham and doctoral student Jeremy Wilkerson.

Recording brain cell activity while blocking neurotransmitters

The new study combined two methods: So-called "patch recording" of tiny voltages in single frog brain cells and how the voltages change in response to sounds of different lengths, and the administration of drugs that block neurotransmitters - a way to learn how brain cells respond to sound with and without the normal neurotransmitters.

"We were able to develop this very novel method to go to a single neuron and manipulate how it computes" by using drugs to block neurotransmitters at the level of a single nerve cell in a frog brain, and then measuring what happens to that neuron in response to frog calls, Alluri says.

"Delivering drugs [to brain cells] and doing whole-cell recording are two methods already established," Rose says. "It's combining them that's new."

The researchers measured the activity of single neurons in the inferior colliculus. Leopard frogs were used in the study because the inferior colliculus also is found in humans and other animals "so the frogs are a great model," Alluri says.

Also, frog call frequencies fall within the range people hear, and the frequencies used by leopard frogs are those at which people can hear the quietest sounds, Rose says.

During the study, a single electrode measured activity in a single frog neuron while the researchers used a computer to generate various parts of frog calls - from a complete call down to a single short sound or tone from the call.

The method made it possible "to record or measure millivolt - thousandths of a volt - changes in the cell," Rose says. "It's very difficult to do this because of the minute size of the neurons," which are roughly one-tenth as thick as a human hair.

After measuring millivolt changes in 58 brain cells in frogs in response to sound, the researchers used a mathematical model to convert the information into how much a brain cell was excited or inhibited by a given sound pulse.

Incoming sounds produce chemical nerve signals that can excite a neuron to fire a new signal or inhibit it from firing.

The researchers administered drugs to block neurotransmitters common to humans, frogs and other animals: GABA-A, which is responsible mainly for inhibiting nerve cells from firing, and glutamate receptors (AMPA and NMDA), which are involved primarily in exciting neurons to fire.

For example, by blocking GABA-A - which normally inhibits nerve cells - the inhibition of frog brain cells was decreased, so the cells responded to sounds of all durations, not just short sounds.

"Frog neurons, like those in people and other animals, receive the same type of chemical inputs, but it's been a major challenge to understand how they work together to enable to enable the neurons to compute the length of a sound," Rose says.

The findings: Short sounds trigger brain cell inhibition, excitation

"To distill it down, these studies allowed us to reveal the timing relationships between excitation and inhibition [of brain cells] that are critical for making this computation" of how long a sound lasts, Rose says.

Specifically, the experiments showed that when a brain cell responds to a short sound, the cell first is inhibited from firing for as long as the sound lasts - a new discovery - and then is excited so it can fire. There is minimal overlap between the time the neuron is inhibited and excited, so this is known as the "anticoincidence mechanism."

For longer sounds, the brain cell was excited for the same length of time as for shorter sounds. But the neuron first remained inhibited for a longer time, and that time overlapped with the time the cell was excited, which had the effect of suppressing the signal emitted by the brain cell. So the cell doesn't respond to the longer sounds.

In other words, if a sound is short or long, the brain cell is excited for the same period of time. But the signal that inhibits excitation is shorter for short sounds and longer for long sounds. The longer inhibition for longer sounds cancels much of the excitatory signal so the brain cell can distinguish short sounds from longer sounds.

The researchers also found that in nerve cells that detect short sounds, that ability is amplified by electrical properties of the nerve cell membrane's ion channels, which allow the entry and exit of charged chemicals.


Related Links
University of Utah
All About Human Beings and How We Got To Be Here

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Dalai Lama urges education reform to end human cruelty
Geneva (AFP) March 11, 2016
The Dalai Lama called Friday for dramatic education reforms to put more emphasis on values such as compassion. "Frankly speaking, our generation, not much hope," the Tibetan Buddhist spiritual leader told a packed auditorium in Geneva, lamenting that the 21st century looked as if it would be every bit as bloody and heartless as the 20th. But, he stressed, "our hope is the future generati ... read more

Canada gives computers to Syrian refugees

Japan, US, France to team up on Fukushima clean-up: official

Japan marks 2011 earthquake, tsunami, nuclear disaster

Canada to takeover Haiti peacekeeping: media

Super-clear synapses at super resolutions

Eco-friendly tech could transform European aluminum industry by 2050

Ruby red improves in the microwave oven

Metamaterial separation proposed for chemical, biomolecular uses

Clean energy could stress global water resources

Using statistics to predict rogue waves

Taming oceans for 24/7 power

Flooding alleviated by targeted tree planting and river restoration

Australian icebreaker home for repairs after Antarctica grounding

NASA tracking the influence of tides on ice shelves in Antarctica

In search of Earth's oldest ice

Greenland's ice is getting darker, increasing risk of melting

Unease over Chinese investors buying farms Down Under

Pesticides affect bees' ability to locate flowers, drink nectar

US gives tentative OK to testing genetically modified mosquitoes

Impact of climate change on agriculture may be underestimated

Pakistan rains leave 28 dead: officials

Pakistan rains leave 42 dead: officials

Japan's tsunami: Five things after five years

Heavy rain kills six in Oman, UAE: media

Three key start-ups from Africa's top science forum

Seven dead in clashes in Africa's oldest wildlife reserve in DR Congo

South African soldier killed in Sudan's Darfur region

Nigerian Army Council clears Boko Haram arms officer

Neanderthal diet: Only 20 percent vegetarian

Dalai Lama urges education reform to end human cruelty

Early human habitat, recreated for first time, shows life was no picnic

Early human habitat model reveals a dangerous existence

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.