Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Earth Science News .




WATER WORLD
Migrating animals add new depth to how the ocean "breathes"
By Morgan Kelly, Office of Communications
Princeton NJ (SPX) Jun 27, 2013


Research begun at Princeton University found that the numerous small sea animals that migrate from the surface to deeper water every day consume vast amounts of what little oxygen is available in the ocean's aptly named "oxygen minimum zone" daily. The findings reveal a crucial and underappreciated role that animals have in ocean chemistry on a global scale. The figure above shows the various depths (in meters) that animals migrate to during the day to escape predators. Red indicates the shallowest depths of 200 meters (650 feet), and blue represents the deepest of 600 meters (2,000 feet). The black numbers on the map represent the difference (in moles, used to measure chemical content) between the oxygen at the surface and at around 500 meters deep, which is the best parameter for predicting migration depth. (Courtesy of Daniele Bianchi).

The oxygen content of the ocean may be subject to frequent ups and downs in a very literal sense - that is, in the form of the numerous sea creatures that dine near the surface at night then submerge into the safety of deeper, darker waters at daybreak.

Research begun at Princeton University and recently reported on in the journal Nature Geoscience found that animals ranging from plankton to small fish consume vast amounts of what little oxygen is available in the ocean's aptly named "oxygen minimum zone" daily. The sheer number of organisms that seek refuge in water roughly 200- to 650-meters deep (650 to 2,000 feet) every day result in the global consumption of between 10 and 40 percent of the oxygen available at these depths.

The findings reveal a crucial and underappreciated role that animals have in ocean chemistry on a global scale, explained first author Daniele Bianchi, a postdoctoral researcher at McGill University who began the project as a doctoral student of atmospheric and oceanic sciences at Princeton.

"In a sense, this research should change how we think of the ocean's metabolism," Bianchi said. "Scientists know that there is this massive migration, but no one has really tried to estimate how it impacts the chemistry of the ocean.

"Generally, scientists have thought that microbes and bacteria primarily consume oxygen in the deeper ocean," Bianchi said. "What we're saying here is that animals that migrate during the day are a big source of oxygen depletion. We provide the first global data set to say that."

Much of the deep ocean can replenish (often just barely) the oxygen consumed during these mass migrations, which are known as diel vertical migrations (DVMs).

But the balance between DVMs and the limited deep-water oxygen supply could be easily upset, Bianchi said - particularly by climate change, which is predicted to further decrease levels of oxygen in the ocean. That could mean these animals would not be able to descend as deep, putting them at the mercy of predators and inflicting their oxygen-sucking ways on a new ocean zone.

"If the ocean oxygen changes, then the depth of these migrations also will change. We can expect potential changes in the interactions between larger guys and little guys," Bianchi said.

"What complicates this story is that if these animals are responsible for a chunk of oxygen depletion in general, then a change in their habits might have a feedback in terms of oxygen levels in other parts of the deeper ocean."

The researchers produced a global model of DVM depths and oxygen depletion by mining acoustic oceanic data collected by 389 American and British research cruises between 1990 and 2011. Using the background readings caused by the sound of animals as they ascended and descended, the researchers identified more than 4,000 DVM events.

They then chemically analyzed samples from DVM-event locations to create a model that could correlate DVM depth with oxygen depletion. With that data, the researchers concluded that DVMs indeed intensify the oxygen deficit within oxygen minimum zones.

"You can say that the whole ecosystem does this migration - chances are that if it swims, it does this kind of migration," Bianchi said. "Before, scientists tended to ignore this big chunk of the ecosystem when thinking of ocean chemistry. We are saying that they are quite important and can't be ignored."

Bianchi conducted the data analysis and model development at McGill with assistant professor of earth and planetary sciences Eric Galbraith and McGill doctoral student David Carozza. Initial research of the acoustic data and development of the migration model was conducted at Princeton with K. Allison Smith (published as K.A.S. Mislan), a postdoctoral research associate in the Program in Atmospheric and Oceanic Sciences, and Charles Stock, a researcher with the Geophysical Fluid Dynamics Laboratory operated by the National Oceanic and Atmospheric Administration.

Bianchi, Daniele, Eric D. Galbraith, David A. Carozza, K.A.S. Milan and Charles A. Stock. 2013. Intensification of open-oxygen minimum zones by vertically migrating animals. Nature Geoscience. Article first published online: June 9, 2013. DOI:10.1038/ngeo1837

.


Related Links
Princeton Journal Watch
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
Gulf of Mexico could see record 'dead zone': US
Washington (AFP) June 26, 2013
The Gulf of Mexico could see a record-size dead zone this year of oxygen-deprived waters resulting from pollution, US scientists have cautioned based on government data models. The National Oceanic and Atmospheric Administration's forecasts said the dead zone could be as large as New Jersey, or up to 8,561 square miles (22,172 square kilometers). Dead zones are toxic to marine life and a ... read more


WATER WORLD
India chopper crash kills 20 as flood rescue forges on

India rescue chopper crash death toll rises to 20

WIN-T Increment 1 Enables National Guard to Restore Vital Network Communications Following a Disaster

Australia costs from natural disasters to soar: study

WATER WORLD
Laser guided codes advance single pixel terahertz imaging

New laser shows what substances are made of; could be new eyes for military

Google making videogame console and smart watch: report

Ames Laboratory scientists solve riddle of strangely behaving magnetic material

WATER WORLD
Sea level along Maryland's shorelines could rise 2 feet by 2050

Migrating animals add new depth to how the ocean "breathes"

El Nino, La Nina unlikely to make an appearance in 2013: WMO

Gulf of Mexico could see record 'dead zone': US

WATER WORLD
Is Arctic Permafrost the "Sleeping Giant" of Climate Change?

The rhythm of the Arctic summer

Global cooling as significant as global warming

Warm ocean drives most Antarctic ice shelf loss

WATER WORLD
Comparing genomes of wild and domestic tomato

Dutch government introduces nitrogen-reduction bill for nature areas

Rotation-resistant rootworms owe their success to gut microbes

Pesticides tainting traditional China herbs: Greenpeace

WATER WORLD
New Jersey may have been hit by a tsunami in mid-June

Calgary woman's drowning brings flood toll to four

Mexico storm upgraded to hurricane: forecasters

India flood rescue ops intensify, up to 1,000 feared dead

WATER WORLD
Mali coup leader says sorry: military source

New Sudan armed forces chief after rebel attacks

Uganda president's son denies plan to succeed father

Africa juggles East and West, as Obama comes to visit

WATER WORLD
China to fund search for origins of early humans

The evolution of throwing

Australia, Indonesia to face off over people smuggling

Outside View: Cosby's inciteful insights on Muslims




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement