Earth Science News  





. Minor Mutations In Avian Flu Virus Increase Chances Of Human Infection

Under the microscope: The H5N1 Avian Flu Virus.
by Staff Writers
La Jolla CA (SPX) Mar 20, 2006
The H5N1 avian influenza virus, commonly known as "bird flu," is a highly contagious and deadly disease in poultry. So far, its spread to humans has been limited, with 177 documented severe infections, and nearly 100 deaths in Indonesia, Vietnam, Thailand, Cambodia, China, Iraq, and Turkey as of March 14, 2006, according to the World Health Organization.

"With continued outbreaks of the H5N1 virus in poultry and wild birds, further human cases are likely," said Ian Wilson, a Scripps Research professor of molecular biology and head of the laboratory that conducted the recent study. "The potential for the emergence of a human-adapted H5 virus, either by re-assortment or mutation, is a clear threat to public health worldwide."

Of the H5N1 strains isolated to date, the researchers looked at A/Vietnam/1203/2004 (Viet04), one of the most pathogenic H5N1 viruses studied so far. The virus was originally isolated from a 10-year-old Vietnamese boy who died from the infection in 2004. The hemagglutinin (HA) structure from the Viet04 virus was found to be closely related to the 1918 virus HA, which caused some 50 million deaths worldwide.

Using a recently developed microarray technology-hundreds of microscopic assay sites on a single small surface-the study showed that relatively small mutations can result in switching the binding site preference of the avian virus from receptors in the intestinal tract of birds to the respiratory tract of humans. These mutations, the study noted, were already "known in [some human influenza] viruses to increase binding for these receptors."

The study was published on March 16, 2006 by ScienceXpress, the advance online version of the journal Science.

Receptor specificity for the influenza virus is controlled by the glycoprotein hemagglutinin (HA) on the virus surface. These viral HAs bind to host cell receptors containing complex glycans-carbohydrates-that in turn contain terminal sialic acids. Avian viruses prefer binding to ?2-3-linked sialic acids on receptors of intestinal epithelial cells, while human viruses are usually specific for the ?2-6 linkage on epithelial cells of the lungs and upper respiratory tract. Such interactions allow the virus membrane to fuse with the membrane of the host cell so that viral genetic material can be transferred to the cell.

The switch from ?2-3 to ?2-6 receptor specificity is a critical step in the adaptation of avian viruses to a human host and appears to be one of the reasons why most avian influenza viruses, including current avian H5 strains, are not easily transmitted from human-to-human following avian-to-human infection. However, the report did suggest that "once a foothold in a new host species is made, the virus HA can optimize its specificity to the new host."

"Our recombinant approach to the structural analysis of the Viet04 virus showed that when we inserted HA mutations that had already been shown to shift receptor preference in H3 HAs to the human respiratory tract, the mutations increased receptor preference of the Viet04 HA towards specific human glycans that could serve as receptors on lung epithelial cells," Wilson said. "The effect of these mutations on the Viet04 HA increases the likelihood of binding to and infection of susceptible epithelial cells."

The study was careful to note that these results reveal only one possible route for virus adaptation. The study concluded that other, as yet "unidentified mutations" could emerge, allowing the avian virus to switch receptor specificity and make the jump to human-to-human transmission.

The glycan microarray technology, which was used to identify the mutations which could enable adaptation of H5N1 into the human population in the laboratory, could also be used to help identify new active virus strains in the field by monitoring changes in the receptor binding preference profile where infection is active, according to according to Jeremy M. Berg, the director of the National Institute of General Medical Sciences (NIGMS), part of the National Institutes of Health (NIH). The glycan microarray was developed by The Consortium for Functional Glycomics, an international group led by Scripps Research scientists and supported by the NIGMS.

"This technology allows researchers to assay hundreds of carbohydrate varieties in a single experiment," Berg said. "The glycan microarray offers a detailed picture of viral receptor specificity that can be used to map the evolution of new human pathogenic strains, such as the H5N1 avian influenza, and could prove invaluable in the early identification of emerging viruses that could cause new epidemics."

Other authors of the study include James Stevens of Scripps Research; Ola Blixt of Scripps Research and Glycan Array Synthesis Core-D, Consortium for Functional Glycomics; Terrence M. Tumpey, Influenza Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention; Jeffery K. Taubenberger, Department of Molecular Pathology, Armed Forces Institute of Pathology, and; James C. Paulson, Scripps Research and Glycan Array Synthesis Core-D, Consortium for Functional Glycomics.

Related Links
Scripps Research Institute
World Health Organization

Emerging Disease Risks Prompt Scientists To Call
Edinburgh, UK (SPX) Mar 17, 2006
Knowledge of 'movement routes' is the key to predicting the pattern of spread of infectious diseases of humans, and similar data could be crucial to understand animal disease risks, says team from the University of Edinburgh.

.
Get Our Free Newsletters Via Email
  



  • Louisiana Selects SGI For Storm Modeling And Visualization
  • Search For Katrina's Dead Stymied By Bureaucratic Wrangling
  • China Offers Bangladesh River Data For Flood Forecasts
  • Thailand To Make Evacuation Plans After Underwater Tremors

  • Tiny 'Cages' That Trap Carbon Dioxide Could Help Stop Climate Change
  • Strong Storms Linked With Rising Sea Surface Temperatures
  • Snow Thickness Data Key To Understanding Polar Climate Wildlife Habitats
  • Greenhouse Theory Smashed By Biggest Stone

  • Goodrich Delivers True Color Images On Japanese EO Satellite
  • International Symposium On Radar Altimetry To Meet In Venice
  • Satellites Ensure Safe Passage Through Treacherous Waters In Ocean Race
  • ESA Satellite Program Monitors Dangerous Ocean Eddies

  • Journal Of Industrial Ecology Focuses On Eco-Efficiency
  • USC, Rice To Develop Bacteria-Powered Fuel Cells
  • Book Offers A Viable Alternative To Fossil Fuel
  • Price Of Processing Ultra-Clean Coal Gets Economical

  • Minor Mutations In Avian Flu Virus Increase Chances Of Human Infection
  • Emerging Disease Risks Prompt Scientists To Call
  • Evolution In Action: Why Some Viruses Jump Species
  • Creation Of Antibiotic In Test Tube Looks To Better Antibiotics

  • How Flowers Changed The World
  • Rhinos Clinging To Survival In The Heart Of Borneo
  • Researchers Probe Insect Flight Muscles One Molecule At A Time
  • To Save A Species, The Last Of Java's Rhinos Poised To Be Split

  • Hong Kong Pollution Leaves Tourists Choking
  • Reducing Soot Particles Is Associated With Longer Lives
  • Metabolites Of Pharmaceuticals Identified In Wastewater
  • Pollution Trackers Hit The Road To Pinpoint Airborne Culprits

  • Aging Japan Building Robots To Look After Elderly
  • 'Wild' Play As A Child Breeds Respect For Environment In Adults
  • Most Human Chimp Differences Due To Gene Regulation Not Genes
  • Stuffing Our Kids So They Can Die First

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement