Subscribe to our free daily newsletters
. Earth Science News .

Subscribe to our free daily newsletters

More rain leads to fewer trees in the African savanna
by Staff Writers
Princeton NJ (SPX) Oct 20, 2015

Princeton University researchers might have finally provided a solution to the ecological riddle of why tree abundance on Africa's grassy savannas diminishes in response to heavy rainfall despite scientists' expectations to the contrary. The researchers found that the ability of grasses to more efficiently absorb and process water gives them an advantage over trees such as the acacia (pictured). Image courtesy Kev Moses, Licensed under CC BY 2.0. For a larger version of this image please go here.

In 2011, satellite images of the African savannas revealed a mystery: these rolling grasslands, with their heavy rainfalls and spells of drought, were home to significantly fewer trees than researchers had expected. Scientists supposed that the ecosystem's high annual precipitation would result in greater tree growth. Yet a 2011 study found that the more instances of heavy rainfall a savanna received, the fewer trees it had.

To this ecological riddle, Princeton University researchers might have finally provided a solution. In a study published in the Proceeding of the National Academy of Sciences, researchers use mathematical equations to show that physiological differences between trees and grasses are enough to explain the curious phenomenon.

The researchers found that under very wet conditions, grasses have an advantage because they can quickly absorb water and support high rates of photosynthesis, the process by which plants convert sunlight into energy. Trees, with their tougher leaves and roots, are able to survive better in dry periods because of their ability to withstand water stress. But this amounts to a disadvantage for trees in periods of intense rainfall, as they are comparatively less effective at utilizing the newly abundant water.

"A simple way to view this is to think of rainfall as annual income," said first author Xiangtao Xu, a graduate student in the laboratory of second author David Medvigy, a Princeton assistant professor of geosciences. "Trees and grasses are competing over the amount of money the savanna gets every year and it matters how they use their funds."

Xu explained that when the "bank" is full with rain, grasses, which build relatively cheap structures, thrive. When there is a deficit of rain, the trees suffer less than grasses and therefore win out.

The problem is that several high-profile papers over the past decade have predicted that periods of intense rainfall will become more frequent around the globe, especially in tropical areas, Xu said. The Princeton research suggests that these global climate changes will eventually lead to a reduced abundance of trees on the savannas.

"Because the savanna takes up a large area, which is home to an abundance of both wild animals and livestock, this will influence many people who live in those areas," Xu said. "It's important to understand how the biome would change under global climate change."

The study highlights the importance of understanding the pattern and intensity of rainfall, not just the total annual precipitation, which is where most research in this area has focused, Xu said. In 50 years, a region may still experience the same overall amount of precipitation. If the intensity changes, however, that will affect the abundance of grasses and trees. This, in turn, will influence the herbivores that subsist on them, and other animals in the biome - essentially, affecting the entire ecosystem.

Xu, Medvigy and co-author Ignacio Rodriguez-Iturbe, Princeton's James S. McDonnell Distinguished University Professor of Civil and Environmental Engineering, created a numerical model that mimicked the actual mechanistic functions of the trees and grasses. They put in equations for how both plants photosynthesize, absorb water and even steal water from one other. These equations were coupled with a random rainfall generator based on rainfall parameters derived from field observations across the savanna.

This configuration allowed the team to observe how the plants would respond under different climate conditions. Past analyses of the savanna have only considered annual or monthly rainfall, but understanding how rainfall is distributed in different areas on a daily scale is critical in the savanna, Xu said. Daily rainfall intensity determines who will win in a competition between grasses and trees for the finite resource of water.

"We put realistic rainfall schemes into the model, then generated corresponding grass or tree abundance, and compared the numerical results with real-world observations," Xu said.

The researchers then tested the model using field measurements from a well-studied savanna in Nylsvley, South Africa, and nine other sites along the Kalahari Transect, which is a sort of border of atmospheric and climate activity in southern Africa. The researchers also used remote-sensing data across the whole continent. For each site, the model accurately predicted the tree abundance that the researchers observed.

Gaby Katul, a professor of hydrology and micrometeorology at Duke University, said that the Princeton research makes apparent the local effect of rainfall variation on plant dominance and an ecosystem's composition.

"This work offers evidence of how shifts in rainfall affect the tree-grass interaction because rainfall variations are large," said Katul, who was not involved in the research. "The approach can be used not only to 'diagnose' the present state where rainfall pattern variations dominate but also offers a 'prognosis' as to what may happen in the future."

The researchers' finding that grasses win out in periods of intense rainfall rejects the long-held theory of root-niche separation, Xu said, which predicts that trees will outcompete grasses under intense rainfall when the soil becomes saturated because their heavy roots penetrate deeper into the ground.

"This hypothesis ignores the fact that grasses and trees have different abilities for absorbing and utilizing water," Xu said. "And that's one of the most important parts of what we found. Grasses are more efficient at absorbing water, so in a big rainfall event, grasses win."

Xu said it would be difficult to predict whether changes in grass and tree distribution would have a positive or negative impact on the savanna. But he did say that more grasses mean more support for cows and horses and other herbivores. On the other hand, fewer trees mean less carbon dioxide is removed from the atmosphere, and a loss of habitat for birds and other animals that rely on the trees.

The model does, however, offer an entry point for better policies and decisions to help communities adapt to future changes. "It's just like with the weather," Xu said. "If you don't read the weather report, you have to take what nature gives you. But if you know in advance that it will rain tomorrow, you know to bring an umbrella."

The paper, "Relation between rainfall intensity and savanna tree abundance explained by water use strategies," was published Oct. 5 by the Proceedings of the National Academy of Sciences. The work was supported by the Princeton Environmental Institute and the Andlinger Center for Energy and the Environment at Princeton University.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Princeton University
Forestry News - Global and Local News, Science and Application

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Protected and intact forests lost at an alarming rate around the world
Espoo, Finland (SPX) Oct 16, 2015
Protected and intact forests have been lost at a rapid rate during the first 12 years of this century. According to researchers at Aalto University, Finland, 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest in the world were lost during 2000 - 2012. These rates of forest loss are high compared to the total global forest loss of 5% for the same time p ... read more

Libya vet steered Noah's ark of pets to safety

Hungarian PM says migrant flow 'look like army'

First Fukushima worker diagnosed with radiation-linked cancer: Japan official

Nearly 2,000 died in hajj stampede: foreign data

Nanoscale diamond 'racetrack' becomes breakthrough Raman laser

Deutsche Telekom, Huawei in cloud link to rival Amazon

Ukraine to receive U.S. radars by mid-November

Metal defects can be eliminated by cyclic loading

Beavers take a chunk out of nitrogen in Northeast rivers

Ocean heat content reveals secrets of fish migration behaviors

Scientists find some thrive in acid seas

Sunscreen chemicals may be killing coral reefs popular with tourists

Antarctic species threatened by willful misinterpretation of legal treaty

Warming opens famed Northwest Passage to navigation

Pakistan facing climate 'calamity' if warnings go unheeded

Formation of coastal sea ice in North Pacific drives ocean circulation

Australian technology allows cows' weights to be monitored from space

Syria's Arctic seed vault relocated to Morocco, Lebanon

Researchers learn how to keep pathogens, pests from traveling with grain

Trade in invasive plants is blossoming

Hurricane flattens Mexico homes, but major disaster averted

USGS questions study's alarming LA earthquake prediction

Patricia grows into major hurricane threatening Mexico

NASA Study Improves Understanding of LA Quake Risks

Zimbabwe's Robert Mugabe wins Confucius Peace Prize

India reaches out to Africa in resources race with China

US offers Niger surveillance planes as Islamist attacks continue

Cow dung and old tyres inspire S.African township artists

Study: Cadaver arms suggest human fists evolved for punching, too

Mathematically modeling the mind

Being rich in the Middle Ages led to an unhealthy life

Third ancient spearhead found on N.J. shore

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement