. Earth Science News .
Nanotube Membranes Offer Possibility Of Cheaper Desalination

Artist's rendering of methane molecules flowing through a carbon nanotube less than two nanometers in diameter.
by Staff Writers
Livermore CA (SPX) May 22, 2006
A nanotube membrane on a silicon chip the size of a quarter may offer a cheaper way to remove salt from water. Researchers at Lawrence Livermore National Laboratory have created a membrane made of carbon nanotubes and silicon that may offer, among many possible applications, a less expensive desalinization.

The nanotubes, special molecules made of carbon atoms in a unique arrangement, are hollow and more than 50,000 times thinner than a human hair. Billions of these tubes act as the pores in the membrane. The super smooth inside of the nanotubes allow liquids and gases to rapidly flow through, while the tiny pore size can block larger molecules. This previously unobserved phenomenon opens a vast array of possible applications.

The team was able to measure flows of liquids and gases by making a membrane on a silicon chip with carbon nanotube pores making up the holes of the membrane. The membrane is created by filling the gaps between aligned carbon nanotubes with a ceramic matrix material. The pores are so small that only six water molecules could fit across their diameter.

"The gas and water flows that we measured are 100 to 10,000 times faster than what classical models predict," said Olgica Bakajin, the Livermore scientist who led the research. "This is like having a garden hose that can deliver as much water in the same amount of time as fire hose that is ten times larger."

The research resulted from collaboration between Olgica Bakajin and Aleksandr Noy, who were both recruited to Lawrence Livermore Lab as "Lawrence Fellows" � the Laboratory's initiative to bring in young talented scientists. The principal contributors to the work are postdoctoral researcher Jason Holt and Hyung Gyu Park, a UC Berkeley mechanical engineering graduate student and student employee at Livermore. Other LLNL co-authors included Yinmin Wang, staff scientist, Michael Stadermann, postdoctoral researcher, and Alexander Artyukhin, graduate student employee. The team collaborated with UC Berkeley's professor of mechanical engineering Costas Grigoropoulos. David Eaglesham, now at Applied Materials, also contributed in the early stages of this work.

Membranes that have carbon nanotubes as pores could be used in desalination and demineralization. Salt removal from water, commonly performed through reverse osmosis, uses less permeable membranes, requires large amounts of pressure and is quite expensive. However, these more permeable nanotube membranes could reduce the energy costs of desalination by up to 75 percent compared to conventional membranes used in reverse osmosis.

Carbon nanotubes are a unique platform for studying molecular transport and nanofluidics. Their nanometer-size, atomically smooth surfaces and similarity to cellular water transport channels make them exceptionally suited for this purpose.

"Since water does not wet the outside surface of carbon nanotubes, we were skeptical that water would enter into them, let alone flow really fast," Bakajin said. "But the molecular dynamics simulations in the literature predicted fast flow, so we wanted to test the predictions."

"The first time we set up an experiment with water, we left it overnight thinking that the water level above the membrane would not budge," Park said. "Instead, we came back in the morning and there was a little puddle on the floor under the membrane."

Holt added: "The first thing that came to mind was that the membrane broke, but fortunately it didn't. The membrane allowed water through and blocked gold nanoparticles that were just a bit larger than the nanotube pores."

Simulations of gas and water transport through carbon nanotubes predict that each should flow rapidly. Gas molecules should bounce off its atomically smooth surface like billiard balls. Water molecules should slide through either because of the "slipperiness" of the carbon nanotube surface or due to molecular ordering induced by spatial confinement. The experiments performed by the LLNL team demonstrated these predicted rapid flows of gas and water through carbon nanotubes, but further research is needed to determine the exact transport mechanisms.

Another potential application for the membranes is in gas separation. The high gas permeability and its affinity to hydrocarbons may allow for lower-energy, industrial-gas separations. "Though our membranes have an order of magnitude smaller pore size, the enhanced flow rate per pore and the high pore density makes them superior in both air and water permeability compared to conventional polycarbonate membranes," Bakajin said.

The research appears on the cover of the May 19 edition of the journal Science.

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.

Related Links
-

Zanzibar passes law to punish misuse of water amid drought
Zanzibar, Tanzania (AFP) May 21, 2006
The president of Zanzibar passed a law to punish people convicted of misusing or polluting water, in a bid to save water in the parched Tanzanian island, officials said on Sunday.







  • CapRock Expands Disaster Satellite Services in Preparation For Hurricane Season
  • New Network Needed to Solve First Responder Communications Crisis
  • I think I'll take the stairs
  • Dutch Soldiers Move Into Afghanistan Under Apache Protection

  • Canada wants Kyoto climate-change deal scrapped: report
  • Al Gore issues global warming wake-up call at Cannes
  • Linking Climate Change Across Time Scales
  • Photosynthetic Trends In Northern Circumpolar High Latitudes

  • Allied Defense Wins New Tracking Antenna Orders
  • DLR And EADS To Collaborate On New Earthsat Mission
  • ALOS Snaps Europe
  • NASA Looks At Hurricane Cloud Tops For Windy Clues

  • Scientists say they have cleared technical hurdle in fusion research
  • Critics say price of China's Three Gorges dam too high
  • China reaches milestone with completion of Three Gorges dam
  • China insists its market must be factored in iron ore pricing

  • Finding Cures For The Disease Of Neglect
  • More than 210,000 South Africans on antiretrovirals: spokesman
  • Hundred cases a day of HIV infections in Russia: officials
  • Sanyo says filtering system effective against bird flu viruses

  • Putting The Puzzle Of Life Together
  • Infamous rogue elephant escapes Rwandan park
  • Scientists Develop First Comprehensive Theory Explaining Madagascar's Rich Biodiversity
  • How Healthy Is That Marsh? Biologists Count Parasites

  • Finland hopes to clean up Russian shipping in Baltic
  • Test For Dioxin Sensitivity In Wildlife Could Result From New Study
  • Exxon Valdez Oil Found In Tidal Feeding Grounds Of Ducks, Sea Otters
  • New "Toxic" Ship Bound For India

  • Hobbit Claims Shrunken
  • Europe's Migrant Crisis
  • Human And Chimp Genomes Reveal New Twist On Origin Of Species
  • The Brain's Executive Is An 'Event Planner'

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement