Earth Science News  





. Now Where Did I Leave My Car

File image.
by Staff Writers
Washington DC (SPX) Apr 22, 2009
When we emerge from a supermarket laden down with bags and faced with a sea of vehicles, how do we remember where we've parked our car and translate the memory into the correct action to get back there?

A paper in this week's PLoS Biology identifies the specific parts of the brain responsible for solving this everyday problem. The results could have implications for understanding the functional significance of a prominent brain abnormality observed in neuropsychiatric diseases such as schizophrenia.

Different types of memory are formed in different parts of the brain. The repetitive drive to work or to the supermarket requires well-learnt place memory and involves different brain mechanisms than returning to your car in a car park which requires rapidly-learnt memory of a novel place.

AuthorTobias Bast of The University of Nottingham, teamed with Iain Wilson and Richard Morris at the University of Edinburgh, and Menno Witter at the Norwegian University for Science and Technology, set out to investigate how such rapid place-learning is translated into appropriate behaviour.

They focused on the hippocampus- an elongated, banana-shaped structure beneath the brain's temporal lobe. The hippocampus contributes to conscious memory. It is especially important for the rapid learning of the ever-changing aspects of our everyday experiences.

How the hippocampus mediates such rapid learning has received a lot of attention. A much-studied property of individual hippocampal neurons in rats is their striking ability to hone activity to certain places - known as place-cell firing.

In other words, when rats move about in an environment, electrophysiological recordings from the hippocampus show that within seconds to minutes, many hippocampal neurons come to fire when - and only when - the animal passes a specific place.

This means that the hippocampus rapidly 'learns' and then codes for specific places. But, until now, the way this rapid place learning is translated into behaviour has received less attention.

In the new study, the researchers identified the part of the hippocampus that is responsible for this learning-behaviour translation.

They found that the critical part is the 'intermediate' or middle part of the hippocampus, which combines links to accurate visuo-spatial information - like the position of a car in a car park - with links to behavioural control necessary for returning to that car after a period of time.

To do this the researchers tested rats in a water maze experiment. The rats located and then returned to a platform in the water, with the platform location changing every day. Different parts of the rat's hippocampus were selectively 'lesioned,' or disabled, using a neurotoxin. The effects on the rats' behaviour were then measured.

The study found that if roughly 30-40 percent of neuronal tissue in the middle of the hippocampus - the intermediate region - was spared by the neurotoxin lesions, the rats could carry out the task with similar efficiency as with a fully intact hippocampus.

But when the intermediate hippocampus, or a substantial part of it, was disabled, sparing 30-40 percent of tissue at the two ends of the hippocampus - the so-called 'septal' and 'temporal' hippocampus - the rats struggled with the task.

The researchers also found that the septal end of the hippocampus, featuring links to precise visuo-spatial information, can still rapidly form an accurate place memory - as reflected by the place-related firing of neurons in this region after the rest of the hippocampus was disabled.

However, it cannot translate this memory into behaviour because without the intermediate hippocampus, it lacks the relevant links to behavioural control.

Dr. Bast plans to expand on these discoveries with research into how aberrant hippocampal activity that characterises many neuropsychiatric conditions, such as schizophrenia, contributes to symptoms.

"People often focus on memory deficits when thinking about the significance of aberrant hippocampal function," he said.

"But our new findings highlight the important hippocampal links to behavioural control. We plan to build on these findings and examine the possibility that aberrant hippocampal function - depending on where in the structure it occurs and to which extent - may give rise to selective memory deficits, as well as to more profound disruptions of behavioural control."

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Public Library of Science
From rapid place learning to behavioral performance: A key role for the intermediate hippocampus
All About Human Beings and How We Got To Be Here




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
Vegan, non-vegetarian bone density same
Sydney, April 20, 2009
Australian and Vietnamese scientists say they've have discovered the bone density of vegan Buddhist nuns and non-vegetarian women is identical.

.
Get Our Free Newsletters Via Email
  



  • Three in four quake homes habitable in a month: Berlusconi
  • How Day-Planner For Astronauts Helps Firefighters
  • Australian wildfire inquiry told warning systems failed
  • Implementing Sustainable Technology To Monitor The Integrity Of Bridges

  • Oxfam predicts millions more victims of climate change
  • Severity, Length Of Past Megadroughts Dwarf Recent Drought In West Africa
  • Decline In Greenhouse Gas Emissions Would Reduce Sea-Level Rise
  • Aerosols May Drive A Significant Portion Of Arctic Warming

  • Satellites Show How Earth Moved During Italy Quake
  • RISAT2 Can See Through Thick Clouds
  • Satnav Reflection Technology For Remote Sensing Of The Earth
  • NASA Goddard Orders Second Instrument For GPM Mission

  • Russia, China finalise oil pipeline and supply deal: govt
  • Analysis: Caspian division inches forward
  • A Touch Of Potassium Yields Better Hydrogen-Storage Materials
  • UC Davis Receives Renewable Energy Programs Grant

  • Economic crisis threatens AIDS fight: expert
  • Bird flu found in Tibet: state media
  • Drug-resistant TB rampant in ex-USSR, China: study
  • First Broad Spectrum Anti-Microbial Paint To Kill Superbugs

  • The Life Histories Of The Earliest Land Animals
  • Rally against shark fin trade opens in Singapore
  • China's wild alligators to double in 10 years: report
  • Feather Color Is More Than Skin Deep

  • Vietnam PM halts controversial hotel in park: govt
  • Sofia mayor in 'garbage war' with Bulgaria PM
  • Villa construction frenzy paving Bali paradise
  • Bulgarian PM sets up emergency rubbish cell

  • Now Where Did I Leave My Car
  • Vegan, non-vegetarian bone density same
  • African pygmy genetics are traced
  • Is There A Seat Of Wisdom In The Brain

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement