Subscribe to our free daily newsletters
. Earth Science News .

Subscribe to our free daily newsletters

Oceanographers grow, sequence genome of ocean microbe important to climate change
by Staff Writers
Seattle WA (SPX) Jul 26, 2016

University of Washington doctoral student Vega Shah measures growth in bacteria cultures in the lab using an automated piece of equipment with 96 well plates. Image courtesy University of Washington. For a larger version of this image please go here.

Sea turtles and whales may be the charismatic critters of the sea, but the true kingpins of the ocean make up 98 percent of the ocean's biomass - and yet individually are too small to see with the naked eye. These are marine microbes, a diverse group of organisms that includes microalgae, viruses, bacteria and archaea. They serve as the base of the marine food chain and are responsible for controlling much of the ocean's nutrient flow and health.

But given their prevalence, very little is known about how they interact and carry out fundamental processes in the ocean, particularly in deep, low-oxygen waters where the impacts of climate change are becoming significant. In these areas, up to half of all available nitrogen - a nutrient that is essential for all ocean life - is lost due to microbial processes on overdrive because of warmer ocean water and less circulation.

Now, a University of Washington team has shed new light on a common but poorly understood bacteria known to live in these areas. By culturing and sequencing the microbe's entire genome, the oceanographers found that it significantly contributes to the removal of life-supporting nitrogen from the water in new and surprising ways.

"If we want to understand how the oceans are working and be able to model them in any sort of predictive way, we need to more accurately understand what the inputs and outputs are," said senior author Robert Morris, a UW associate professor of oceanography. "This is an important organism that fixes carbon, is involved in nitrogen loss and is in parts of the ocean that are shifting due to climate change. We now have the first-ever culture in the laboratory and we can study its physiology."

The findings will appear July 19 in the Multidisciplinary Journal of Microbial Ecology, a Nature publication.

This organism, given the name Candidatus Thioglobus autotrophicus, is present in low-oxygen waters around the world and is one of the dominant organisms in these areas - between 40 and 60 percent of all cells in some regions.

Living things use oxygen for their metabolic activities, but in low-oxygen areas, bacteria and archaea have evolved to "breathe" other elements available in seawater. One of those is a chemical called nitrate which, when respired, produces gaseous nitrogen. That gas escapes to the atmosphere, effectively leaving the ocean and removing valuable nitrogen from the water.

The bacteria grown and sequenced by the UW oceanographers have been pegged as playing a big role in removing nitrogen from the ocean, but until now scientists didn't have a complete picture of how it happened.

"We are filling in the gaps by providing a full genome," said lead author Vega Shah, a UW doctoral student in oceanography. "Now we can talk about both what these organisms can and can't do."

The research team confirmed the bacteria are contributing to nitrogen loss, but in a different way than expected. More specifically, they are responsible for a key step - converting nitrate to a similar chemical called nitrite - which then goes on to fuel other nitrogen-removal processes. Earlier research had hypothesized that these microbes also produce ammonia, another nitrogen-containing chemical. Instead, the UW team found that the microbes consume ammonia, essentially competing with other organisms for this nitrogen compound that is also important for growth and development.

At a global scale, the areas of the ocean where these bacteria live are getting bigger as climate change creates conditions that produce low-oxygen zones, including warmer ocean temperatures and less water circulation.

"In the very big picture, we know that different types of oxygen minimum zones that house these organisms are getting bigger and more persistent," Shah said. "So, whatever influence these bugs have on water chemistry and the atmosphere is going to get more and more important - basically, their habitat is expanding."

Growing this organism in the lab was no easy task. The UW oceanographers combined several techniques to culture the bacteria in as close as possible to their native ocean environment. It took almost a year to stabilize them to the point where researchers could start doing physiological experiments.

Even the experiments, however, took more time than usual, because these organisms grow much slower than most cultures grown in the lab.

"Most experiments lasted 10 to 15 days because they were growing so slowly. But the advantage is they are actually behaving very similarly to how they do in the ocean environment," Morris said.

Shah collected the organism from a low-oxygen fjord off the coast of British Columbia from the R/V Thomas G. Thompson during a student research cruise. She then used these organisms to grow identical offspring in the lab.

The researchers will look next at the role this bacteria play in the ocean's carbon and sulfur cycles. They also recently received National Science Foundation funding to study this organism and its relatives in other low-oxygen areas around the world, including off the coast of Mexico.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
University of Washington
Water News - Science, Technology and Politics

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Ocean acidification - the limits of adaptation
Kiel, Germany (SPX) Jul 21, 2016
In an unprecedented evolutionary experiment, scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel and the Thunen Institute of Fisheries Ecology demonstrated that the most important single-celled calcifying alga of world's oceans, Emiliania huxleyi, is only able to adapt to ocean acidification to a certain extent. The proof of principle for evolutionary adaptation was provided by ... read more

Study: Crumbling school buildings yield crummy scores

Taiwan buses recalled after deadly fire disaster

Ex-Marine 'assassinated' Baton Rouge cops: police

Ex-Marine 'assassinated' Baton Rouge cops

Rice's 'antenna-reactor' catalysts offer best of both worlds

'Jumping film' harnesses the power of humidity

Chemists create microscopic and malleable building blocks

Computational design tool transforms flat materials into 3-D shapes

PACE will help uncover new information about health of our oceans

South Africa's great white sharks face extinction: study

Ocean acidification - the limits of adaptation

Ocean Glider tells quite a tale after 74 days at sea

NASA's Field Campaign Investigates Arctic North American Ecosystems

Warming Arctic could disrupt migration patterns of millions of birds

More Chinese vessels to sail the Arctic: shipping firm

Ocean warming to blame for Antarctic Peninsula glacier retreat

ANU leads effort to develop drought-proof crops

More for less in pastures

Top cocoa grower I.Coast stung by caterpillar invasion

How plants can grow on salt-affected soils

Tropical Storm Frank forms in Pacific off Mexico: NHC

Anger erupts over government handling of China flood

Three tropical storms building in Pacific: NHC

Tide-triggered tremors give clues for earthquake prediction

Five missing soldiers found in Nigeria: army

Tide turns against Liberia's biggest slum

Polish millionaire seized in SSudan arms bust, say Spanish police

Mali opens terrorism inquiry after 17 soldiers killed

Technological and cultural innovations amongst early humans not sparked by climate change

Genomes from Zagros mountains reveal different Neolithic ancestry

Cave art reveals religious encounters between Europeans and Native Americans

Changes in primate teeth linked to rise of monkeys

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement