Subscribe free to our newsletters via your
. Earth Science News .

Subscribe free to our newsletters via your

Predicting severe hail storms
by Staff Writers
Washington DC (SPX) Mar 24, 2016

Radar imagery from 6:56 p.m. shows a close-up of the Mayfest supercell centered west of Benbrook, Texas. The pink and darkest red colors represent radar indications of large hail with this storm. The storm impacted the Mayfest festival at 7:10 p.m. Image courtesy National Weather Service. For a larger version of this image please go here.

When a hail storm moved through Fort Worth, Texas on May 5, 1995, it battered the highly populated area with hail up to 4 inches in diameter and struck a local outdoor festival known as the Fort Worth Mayfest. The Mayfest storm was one of the costliest hailstorms in U.S history, causing more than $2 billion in damage and injuring at least 100 people.

Scientists know that storms with a rotating updraft on their southwestern sides - which are particularly common in the spring on the U.S. southern plains - are associated with the biggest, most severe tornadoes and also produce a lot of large hail. However, clear ideas on how they form and how to predict these events in advance have proven elusive.

A team based at University of Oklahoma (OU) working on the Severe Hail Analysis, Representation and Prediction (SHARP) project works to solve that mystery, with support from the National Science Foundation (NSF).

Performing experimental weather forecasts using the Stampede supercomputer at the Texas Advanced Computing Center, researchers have gained a better understanding of the conditions that cause severe hail to form, and are producing predictions with far greater accuracy than those currently used operationally.

Improving model accuracy
To predict hail storms, or weather in general, scientists have developed mathematically based physics models of the atmosphere and the complex processes within, and computer codes that represent these physical processes on a grid consisting of millions of points. Numerical models in the form of computer codes are integrated forward in time starting from the observed current conditions to determine how a weather system will evolve and whether a serious storm will form.

Because of the wide range of spatial and temporal scales that numerical weather predictions must cover and the fast turnaround required, they are almost always run on powerful supercomputers. The finer the resolution of the grid used to simulate the phenomena, the more accurate the forecast; but the more accurate the forecast, the more computation required.

The highest-resolution National Weather Service's official forecasts have grid spacing of one point for every three kilometers. The model the Oklahoma team is using in the SHARP project, on the other hand, uses one grid point for every 500 meters - six times more resolved in the horizontal directions.

"This lets us simulate the storms with a lot higher accuracy," says Nathan Snook, an OU research scientist. "But the trade-off is, to do that, we need a lot of computing power - more than 100 times that of three-kilometer simulations. Which is why we need Stampede."

Stampede is currently one of the most powerful supercomputers in the U.S. for open science research and serves as an important part of NSF's portfolio of advanced cyberinfrastructure resources, enabling cutting-edge computational and data-intensive science and engineering research nationwide.

According to Snook, there's a major effort underway to move to a "warning on forecast" paradigm - that is, to use computer-model-based, short-term forecasts to predict what will happen over the next several hours and use those predictions to warn the public, as opposed to warning only when storms form and are observed.

"How do we get the models good enough that we can warn the public based on them?" Snook asks. "That's the ultimate goal of what we want to do - get to the point where we can make hail forecasts two hours in advance. 'A storm is likely to move into downtown Dallas, now is a good time to act.'"

With such a system in place, it might be possible to prevent injuries to vulnerable people, divert or move planes into hangers and protect cars and other property.

Looking at past storms to predict future ones
To study the problem, the team first reviews the previous season's storms to identify the best cases to study. They then perform numerical experiments to see if their models can predict these storms better than the original forecasts using new, improved techniques. The idea is to ultimately transition the higher-resolution models they are testing into operation in the future.

Now in the third year of their hail forecasting project, the researchers are getting promising results. Studying the storms that produced the May 20, 2013 Oklahoma-Moore tornado that led to 24 deaths, destroyed 1,150 homes and resulted in an estimated $2 billion in damage, they developed zero to 90 minute hail forecasts that captured the storm's impact better than the National Weather Service forecasts produced at the time.

"The storms in the model move faster than the actual storms," Snook says. "But the model accurately predicted which three storms would produce strong hail and the path they would take."

The models required Stampede to solve multiple fluid dynamics equations at millions of grid points and also incorporate the physics of precipitation, turbulence, radiation from the sun and energy changes from the ground. Moreover, the researchers had to simulate the storm multiple times - as an ensemble - to estimate and reduce the uncertainty in the data and in the physics of the weather phenomena themselves.

"Performing all of these calculations on millions of points, multiple times every second, requires a massive amount of computing resources," Snook says.

The team used more than a million computing hours on Stampede for the experiments and additional time on the Darter system at the National Institute for Computational Science for more recent forecasts. The resources were provided through the NSF-supported Extreme Science and Engineering Discovery Environment (XSEDE) program, which acts as a single virtual system that scientists can use to interactively share computing resources, data and expertise.

The potential of hail prediction
Though the ultimate impacts of the numerical experiments will take some time to realize, its potential motivates Snook and the severe hail prediction team.

"This has the potential to change the way people look at severe weather predictions," Snook says. "Five or 10 years down the road, when we have a system that can tell you that there's a severe hail storm coming hours in advance, and to be able to trust that - it will change how we see severe weather. Instead of running for shelter, you'll know there's a storm coming and can schedule your afternoon."

Ming Xue, the leader of the project and director of the Center for Analysis and Prediction of Storms (CAPS) at OU, gave a similar assessment.

"Given the promise shown by the research and the ever increasing computing power, numerical prediction of hailstorms and warnings issued based on the model forecasts, with a couple of hours of lead time, may indeed be realized operationally in a not-too-distant future, and the forecasts will also be accompanied by information on how certain the forecasts are."

The team published its results in the proceedings of the 20th Conference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans and Land Surface (IOAS-AOLS); they will also be published in an upcoming issue of the American Meteorological Society journal Weather and Forecasting.

"Severe hail events can have significant economic and safety impacts," says Nicholas F. Anderson, program officer in NSF's Division of Atmospheric and Geospace Sciences. "The work being done by SHARP project scientists is a step towards improving forecasts and providing better warnings for the public."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
National Science Foundation
Weather News at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Europe's 2013-2014 winter storms were most powerful in 70 years
Plymouth, England (UPI) Mar 15, 2016
In 2013 and 2014, a series of winter storms slammed Europe's Atlantic coast. According to new analysis, the storms were the most powerful since 1948. Researchers with the University of Plymouth in England measured erosion - including changes in beach gradient, sandbar position and coastal realignment - at sites along the coasts of Scotland, Ireland, England, France, Portugal, Spain an ... read more

TEPCO bungles Fukushima cleanup as robots damaged by Radiation

Sierra Leone begins destroying stockpile of 'unuseable' arms

Prince Harry extends Nepal trip to help quake victims

Asia most exposed to disasters, Africa most vulnerable: study

Uncovering bacterial role in platinum formation

'Invulnerable' coatings for cutting tools from gas

New way to control particle motions on 2-D materials

Saab showcases Sea Giraffe 1X air and surface naval radar

Protecting coral reefs with bubbles

Bolivia to take Chile to court over water dispute

World's nations gather to rescue ocean life

In Florida, calls to keep 'saving the manatees'

Digging deeper: Study improves permafrost models, reduces uncertainties

A glance into the future of the Arctic

Climate warming accelerating carbon loss from thawing Arctic soils

Nature study reveals rapid ice-wedge loss across Arctic

Greenhouse gas mitigation potential from livestock sector revealed

Government use of technology has potential to increase food security

US senators see security risk in China's takeover of Syngenta

Production of butter from shea trees in West Africa pushed back 1,000 years

Wetland enhancement in Midwest could help reduce catastrophic floods of the future

Pakistan rains leave 42 dead: officials

Japan's tsunami: Five things after five years

Pakistan rains leave 28 dead: officials

Nigerian troops free 800 Boko Haram hostages: army

Burundi soldier kills colonel blamed in crackdown: source

Niger president scores landslide win in boycotted run-off

Kenya army says killed 34 Shebab in Somalia firefights

Boosting Synaptic Plasticity to Accelerate Learning

Why did humans make more pottery after the last ice age?

Ancient Denisovan DNA excavated in modern Pacific Islanders

Researchers find ancient DNA preserved in modern-day humans

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement