Subscribe free to our newsletters via your
. Earth Science News .




WATER WORLD
Research uncovers microsopic key to reducing ocean dead zones
by Staff Writers
Provo UT (SPX) Sep 23, 2015


Rhizobia do their work in tiny nodules on plant roots, pictures here between the tweezer prongs. Image courtesy Mark A. Philbrick. For a larger version of this image please go here.

Along the northern edge of the Gulf of Mexico is a 6,000-square mile dead zone of oxygen-depleted water filled with dead plants, dead fish and a damaged ecosystem. Dead zones like this occur when nitrogen and phosphorus from agricultural fertilizers and sewage washes downstream into the ocean and creates huge blooms of toxic algae. Sadly, there are hundreds of them around the world.

Microbiologists at BYU, with financial backing from the National Science Foundation and the U.S Dept. of Agriculture, are addressing this global environmental issue by getting to the root of the problem.

Their research, the most recent of which publishes this week in Proceedings of the National Academy of Sciences, is discovering the potential of naturally-occurring bacteria called rhizobia to stem the tide of oversaturation with nitrogen-based fertilizers.

"If we can find better ways of getting nitrogen to plants, then we can improve the environmental impact of farming," said Paul "Skip" Price, lead author of the new BYU study. "We want to improve this process so we don't have to add as much fertilizer to fields. With active rhizobia, we can have productive crops while still protecting the environment and keeping our waterways safer."

Confused? OK, here's some quick Microbiology 101 for you:

One of the most important (and most limiting) nutrients for plants is nitrogen, but a plant's ability to process it naturally from the atmosphere depends on tiny bacteria called rhizobia.

Rhizobia do their magic by attaching to a plant host--usually inside tiny nodules on the plant's roots--and teaming up with the plant to "fix" nitrogen (turn nitrogen gas into a consumable form). It's a friendly, symbiotic partnership that helps big crops like soybeans, alfalfa and peas grow.

Rhizobia are particularly key because when they're functioning at a high rate, farmers can reduce the amount of nitrogen-based fertilizer they put in the soil. Less fertilizer means less nitrogen in the water runoff, and therefore, less algae growth that depletes ocean oxygen supplies.

The rhizobia expertise of Price, a postdoc, and BYU professor Joel Griffitts has caught the attention of the USDA to the tune of a $450,000 grant, in addition to the $650,000 NSF grant that helped fund early stages of the research. Specifically, they've been tasked with studying the effects of HrrP, a gene that can switch rhizobia from plant pal to plant parasite.

"When this happens, the plant gets no benefit and the rhizobia behave more like a disease," said Griffitts, associate professor of microbiology and molecular biology. "A single gene makes all the difference."

According to Griffitts, plants use a complex vocabulary of chemicals called peptides to "speak" to rhizobia as the bacteria enter the root cells. Those bacteria normally obey the plant's commands. But HrrP, the new gene they've discovered, causes some bacteria to ignore the commands.

"Instead, these bacteria end up living a very self-centered existence," Griffitts said.

For Griffitts, Price, two undergraduate researchers and colleagues at MIT, the findings are fascinating in that they show how easily bacteria can switch from being beneficial to harmful. It also represents another step toward understanding the chemistry behind what makes productive relationships between big organisms and tiny microbes succeed or fail.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Brigham Young University
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
Griffith Researchers show ocean response to Red Dawn
Nathan, Australia (SPX) Sep 18, 2015
The 'Red Dawn' dust storm which enveloped Sydney in 2009 left more than just a huge clean-up bill in its wake. Griffith researchers have shown for the first time that the Tasman Sea marine ecosystem was also affected by the intense dust storm. By analysing satellite imagery of the ocean and dust transport model simulations, Associate Professor Albert Gabric and a group of researchers at ... read more


WATER WORLD
Nepal quake survivors turn porters to deliver aid

Hungarian army given sweeping powers against migrants

Over 190 hurt when fire drill goes wrong in China

Iraqis buy life jackets for trip to Europe's distant shores

WATER WORLD
'Lab-on-a-Chip' to cut costs of sophisticated tests for diseases and disorders

Physicists defy conventional wisdom to identify ferroelectric material

Engineers unlock remarkable 3-D vision from ordinary digital camera technology

Making 3-D objects disappear

WATER WORLD
Taiwan boat caught with huge illegal shark fin haul

Omega-3's are vital for a healthy ocean

Acidic ocean will bend the mermaid's wineglass

The saying 'It never rains but it pours' is truer than ever in Scotland

WATER WORLD
Melting Arctic sea ice accelerates methane emissions

Adaptation to high-fat diet, cold had profound effect on Inuit, including shorter height

Arctic sea ice summertime minimum is fourth lowest on record

Solving the problem of sea ice thickness distribution using molecular concepts

WATER WORLD
Fearless fowl grow and lay better

Activist against palm oil shot dead in Guatemala

Land degradation costs trillions of dollars

Hunter-gatherers were enjoying oatmeal 30,000 years ago

WATER WORLD
At least 10 killed in Iran flash flooding: state TV

Several dead as severe floods hit Sierra Leone capital

Lessons from 2010 quake saved lives in Chile: experts

Tropical storm Ida gains strength in the Atlantic: forecasters

WATER WORLD
Burkina Faso army chiefs, France order coup leaders to disarm

Dealing with climate change and local beliefs in Africa

Burkina on the brink amid coup led by ex-dictator's ally

Shots fired as Burkina Faso guards seize president, PM

WATER WORLD
Scientists report earlier date of shift in human ancestors' diet

Fossil trove adds a new limb to human family tree

Bonobos use finger-pointing, hand gestures to communicate

Ancient human shoulders reveal links to ape ancestors




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.