Subscribe to our free daily newsletters
. Earth Science News .




Subscribe to our free daily newsletters



ABOUT US
Scientists decode brain signals nearly at speed of perception
by Staff Writers
Seattle WA (SPX) Jan 29, 2016


This illustrates brain signals representing activity spurred by visual stimuli experienced by the subjects in this study. In this example, images of human faces generated more brain activity than images of houses. (This was not the result in every case.) Image courtesy Kai Miller and Brian Donohue. For a larger version of this image please go here.

Using electrodes implanted in the temporal lobes of awake patients, scientists have decoded brain signals at nearly the speed of perception. Further, analysis of patients' neural responses to two categories of visual stimuli - images of faces and houses - enabled the scientists to subsequently predict which images the patients were viewing, and when, with better than 95 percent accuracy.

University of Washington computational neuroscientist Rajesh Rao and UW Medicine neurosurgeon Jeff Ojemann, working their student Kai Miller and with colleagues in Southern California and New York, conducted the study.

"We were trying to understand, first, how the human brain perceives objects in the temporal lobe, and second, how one could use a computer to extract and predict what someone is seeing in real time?" explained Rao. He is a UW professor of computer science and engineering, and he directs the National Science Foundation's Center for Sensorimotor Engineering, headquartered at UW.

"Clinically, you could think of our result as a proof of concept toward building a communication mechanism for patients who are paralyzed or have had a stroke and are completely locked-in," he said.

The study involved seven epilepsy patients receiving care at Harborview Medical Center in Seattle. Each was experiencing epileptic seizures not relieved by medication, Ojemann said, so each had undergone surgery in which their brains' temporal lobes were implanted - temporarily, for about a week - with electrodes to try to locate the seizures' focal points.

"They were going to get the electrodes no matter what; we were just giving them additional tasks to do during their hospital stay while they are otherwise just waiting around," Ojemann said.

Temporal lobes process sensory input and are a common site of epileptic seizures. Situated behind mammals' eyes and ears, the lobes are also involved in Alzheimer's and dementias and appear somewhat more vulnerable than other brain structures to head traumas, he said.

In the experiment, the electrodes from multiple temporal-lobe locations were connected to powerful computational software that extracted two characteristic properties of the brain signal: "event-related potentials" and "broadband spectral changes."

Rao characterized the former as likely arising from "hundreds of thousands of neurons being co-activated when an image is first presented," and the latter as "continued processing after the initial wave of information."

The subjects, watching a computer monitor, were shown a random sequence of pictures - brief (400 millisecond) flashes of images of human faces and houses, interspersed with blank gray screens. Their task was to watch for an image of an upside-down house.

"We got different responses from different (electrode) locations; some were sensitive to faces and some were sensitive to houses," Rao said.

The computational software sampled and digitized the brain signals 1,000 times per second to extract their characteristics. The software also analyzed the data to determine which combination of electrode locations and signal types correlated best with what each subject actually saw.

In that way it yielded highly predictive information.

By training an algorithm on the subjects' responses to the (known) first two-thirds of the images, the researchers could examine the brain signals representing the final third of the images, whose labels were unknown to them, and predict with 96 percent accuracy whether and when (within 20 milliseconds) the subjects were seeing a house, a face or a gray screen.

This accuracy was attained only when event-related potentials and broadband changes were combined for prediction, which suggests they carry complementary information.

"Traditionally scientists have looked at single neurons," Rao said. "Our study gives a more global picture, at the level of very large networks of neurons, of how a person who is awake and paying attention perceives a complex visual object."

The scientists' technique, he said, is a steppingstone for brain mapping, in that it could be used to identify in real time which locations of the brain are sensitive to types of information.

Lead author of the study is Kai Miller, a neurosurgery resident and physicist at Stanford University who obtained his M.D. and Ph.D. at the UW. Other collaborators were Dora Hermes, a Stanford postdoctoral fellow in neuroscience, and Gerwin Schalk, a neuroscientist at the Wadsworth Institute in New York.

"The computational tools that we developed can be applied to studies of motor function, studies of epilepsy, studies of memory. The math behind it, as applied to the biological, is fundamental to learning," Ojemann said.

The research is published in PLOS Computational Biology.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Washington Health Sciences/UW Medicine
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ABOUT US
Chinese scientists create 'autistic' monkeys
Paris (AFP) Jan 25, 2016
Scientists in China have engineered monkeys with a human autism gene and symptoms, in the hopes of unlocking a treatment for the debilitating but little-understood disorder, a study said Monday. The "transgenic" macaques behaved similarly to humans afflicted with autism, the team wrote - making repetitive gestures, and displaying anxiety and poor social interaction. This meant they cou ... read more


ABOUT US
Ten El Faro families settle with owners of sunken US ship

China pushes inferno documentary into purgatory

Charities warn of 'desperate' plight of refugees in snow

Nepal quake rebuilding to take years, new chief says

ABOUT US
Acoustic tweezers provide much needed pluck for 3-D bioprinting

Designing a pop-up future

Chanel swaps bling for eco-inspired haute couture

Material may offer cheaper alternative to smart windows

ABOUT US
Replace corroded lead pipes in Flint, lawsuit demands

Climate change: Ocean warming underestimated

Pressure building on global water supply

An abundance of viruses that infect ocean microorganisms

ABOUT US
New gravity dataset will help unveil the Antarctic continent

Melting Greenland ice sheet may affect global ocean circulation, future climate

Mounting evidence suggests early agriculture staved off global cooling

Ancient underwater volcanoes may have ended 'Snowball Earth'

ABOUT US
Molecular method promises to speed development of food crops

Global nitrogen footprint mapped for first time

Seagrass genome sequence lends insights to salt tolerance

Earthworms could be a threat to biodiversity

ABOUT US
Shallow earthquakes and deeper tremors along southern San Andreas fault

Alaska hit by 6.8-magnitude earthquake: USGS

Warmer Oceans Could Produce More Powerful Superstorms

More than 1,200 flee as Indonesia volcano spews ash, gas

ABOUT US
Burkina arrests 11 failed coup soldiers after arms depot raid

Horn of Africa port Djibouti signs China trade deals

UN reduces size of peacekeeping force in Ivory Coast

Several dead as Shebab storm African Union base in Somalia

ABOUT US
Chinese scientists create 'autistic' monkeys

The indications of a new geological epoch marked by human impact are clear

Why are habits so hard to break

Evidence of a prehistoric massacre extends the history of warfare




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement