Subscribe to our free daily newsletters
. Earth Science News .

Subscribe to our free daily newsletters

Scientists track speed of powerful internal waves
by Staff Writers
Miami FL (SPX) Oct 15, 2015

These two figures show the internal waves at Dongsha Island on April 23, 2010, as seen by the radar on TerraSAR-X in its conventional mode of operation (left) and in the experimental new mode that permits direct velocity measurements (right), with the measured surface velocities shown in color. Red and blue colors indicate surface velocities of about 0.5 m/s to the left and to the right, respectively. The shown area is 30 km + 80 km. Dongsha Island, which is about 2.7 km + 0.9 km (1.7 mi + 0.6 mi) in size, can be seen near the center of the image. Image courtesy German Aerospace Center (DLR) 2010. For a larger version of this image please go here.

For the first time researchers directly measured the speed of a wave located 80 meters below the ocean's surface from a single satellite image. The new technique developed by researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science is a major advancement in the study of these skyscraper-high internal waves that rarely break the ocean surface.

"This is the first time internal wave velocities could be calculated from data acquired during a single overpass of a satellite," said Roland Romeiser, associate professor of ocean sciences at the UM Rosenstiel School. "This allows us to obtain more accurate information from a satellite that we could in the past."

Using a single satellite image collected at UM's Center for Southeastern Tropical Remote Sensing (CSTARS), the research team was able to determine that a roughly 60-meter high internal wave was traveling at a speed of three miles per hour (1.4 meters per second) near Dongsha Island in the South China Sea. The region is considered to have some of the most powerful internal waves on the planet.

"This is a significant breakthrough using a single image to determine the velocity of a wave below the surface," said Hans Graber, UM Rosenstiel School professor of ocean sciences and director of CSTARS. "This technology offers new opportunities to track the speed of ocean currents or objects moving on or below the ocean surface."

Radar satellites can detect the surface ripples produced by internal waves and the data collected allow researchers to calculate the speed of internal waves traveling below the surface. Prior to the development of this new technology, researchers would have to compare several images taken during multiple satellite overpasses to estimate internal wave velocities.

The radar affixed to the German satellite TerraSAR-X is the first to measure velocities directly during a single overpass but with significant noise. Romeiser and Graber developed a new method to process the data that enhances the internal wave patterns to extract the velocities with unprecedented accuracy. CSTARS is the only place besides the German Aerospace Center (DLR) that is capable of processing these types of images.

Internal waves move huge volumes of heat, salt, and nutrient rich-water across the ocean, which is important to fish, industrial fishing operations and the global climate. In addition, they are important to monitor for safe surface and sub-surface marine operations.

Graber was part of an international research team that spent seven years tracking the movements of internal waves to understand how these waves develop, move and dissipate underwater. The team discovered that internal waves are generated daily from internal tides, which also occur below the ocean surface, and grow larger as the water is pushed westward through the Luzon Strait into the South China Sea. Their findings were published in the May 7 issue of the journal Nature.

A research team led by Romeiser was the first to accurately measure currents from a space shuttle platform between islands off the Dutch coast and the first to make current measurements using the radar on the TerraSAR-X satellite.

The study, titled "Advanced Remote Sensing of Internal Waves by Spaceborne Along-Track InSAR--A Demonstration With TerraSAR-X," appears in the Dec. 2015 issue of the journal Transactions on Geoscience and Remote Sensing, a publication of the Institute of Electronic and Electrical Engineers (IEEE). The study's authors are Roland Romeiser and Hans Graber of the UM Rosenstiel School. The work was supported by grants from the U.S. Office of Naval Research.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
University of Miami Rosenstiel School of Marine and Atmospheric Science
Water News - Science, Technology and Politics

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Marine mathematics helps to map undiscovered deep-water coral reefs
Plymouth, UK (SPX) Oct 15, 2015
A team of marine scientists has discovered four new deep-water coral reefs in the Atlantic Ocean using the power of predictive mathematical models. Located at depths of up to 1.2km, in seas west of Ireland, the reefs were identified by a modelling system developed at Plymouth University that predicts occurrence according to conditions favourable to coral. Researchers from Plymouth, the Cen ... read more

Family of El Faro victim launches $100 million lawsuit

Man survives on ants for six days in remote Australia

New warehouse blast hits Tianjin: China state media

LORELEI Imagines Rapid Automated Language Toolkit

Methodology could lead to more sustainable manufacturing systems

New deposition technique enhances optoelectronic properties of lasers

Mathematicians find 'magic key' to drive Ramanujan's taxi-cab number

Using optical fiber to generate a two-micron laser

Tracking Agricultural Water Use on a Smartphone

New study questions long-held theories of climate variability in the North Atlantic

Scientists track speed of powerful internal waves

Cyprus blasts 'illegal' pipeline from Turkey

2015 Antarctic maximum sea ice extent breaks streak of record highs

Shift in weaning age supports hunting-induced extinction of Siberian woolly mammoths

Study sees powerful winds carving away Antarctic snow

Could 'The Day After Tomorrow' happen?

Researchers learn how to keep pathogens, pests from traveling with grain

Trade in invasive plants is blossoming

Colorful caterpillar chemists

Accurate timing of migration prolongs life expectancy in pike

Volcanic eruptions affect flow of world's major rivers

Simulating path of 'magma mush' inside an active volcano

Ecuador volcano spews giant ash column

Guatemala volcano roars back to life

Cow dung and old tyres inspire S.African township artists

Pro-Compaore politician arrested in Burkina over failed coup

Eutelsat and Facebook to partner on vsat initiative to get Africa online

Two Niger soldiers killed in 'Boko Haram ambush'

Did Homo sapiens colonize Asia before Europe?

Modern humans out of Africa sooner than thought

Breakthrough for electrode implants in the brain

Researchers build a digital piece of brain

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement