Subscribe to our free daily newsletters
. Earth Science News .

Subscribe to our free daily newsletters

Seawater threat to California Central Coast aquifers
by Staff Writers
Stanford CA (SPX) Mar 15, 2017

Stanford Earth professor Rosemary Knight and her PhD student Meredith Goebel. Image courtesy Stacy Geiken.

Researchers from Stanford and the University of Calgary have transformed pulses of electrical current sent 1,000 feet underground into a picture of where seawater has infiltrated freshwater aquifers along the Monterey Bay coastline.

The findings, which will be published in an upcoming issue of the Journal of Hydrology but are available online now, help explain factors controlling this phenomenon, called saltwater intrusion, and could help improve the groundwater models that local water managers use to make decisions about pumping groundwater to meet drinking or farming needs.

"The hope is that local water managers can use these findings to better identify regions most impacted by saltwater intrusion where targeted management practices can be most effectively implemented," said study co-author Meredith Goebel, a PhD candidate at Stanford's School of Earth, Energy and Environmental Sciences.

Goebel's graduate advisor, Rosemary Knight, specializes in adapting geophysical imaging tools to monitor and manage freshwater resources. "In the same way that medical imaging has revolutionized the approach to managing human health, I believe that Earth imaging using geophysical methods can revolutionize the approach to managing the health of our groundwater systems," said Knight, who is the George L. Harrington Professor at Stanford.

According to the United Nations, more than half the world's population lives within 37 miles (60 kilometers) of the coast, and three-quarters of all large cities are located in coastal areas. Many coastal communities rely on groundwater to satisfy their drinking and farming water needs. But removing too much of that groundwater can change the fluid pressure of underground aquifers, drawing seawater into coastal aquifers and corrupting water supplies. Saltwater intrusion is often irreversible.

To determine the extent of saltwater intrusion in the Monterey Bay region, the research team used a geophysical imaging technique called electrical resistivity tomography (ERT) to map the salinity of groundwater along a 28-mile (45-kilometer) stretch of coastline from Aptos to Monterey. ERT measures a property called electrical resistivity. Seawater is electrically conductive due to its high salt content, while freshwater is electrically resistive.

ERT could provide a cheaper and better alternative than the current method used to monitor saltwater intrusion, which involves drilling "sentinel" wells at specific locations. "Unlike wells, which only give you information at one location, ERT gives you a full two-dimensional slice with spatial coverage that is just not possible with wells," Knight said.

Sentinel wells are also expensive: Four of the wells used to monitor saltwater intrusion along Monterey Bay cost nearly $1 million to drill. In contrast, the Stanford team's survey cost approximately $200,000.

ERT surveys could also be repeated at the same spot to observe changes over time, said study co-author Adam Pidlisecky, who is the chief research officer at Aranz Geo. "Looking at differences through time can often be more helpful than trying to understand a single image," said Pidlisecky, who conducted the research while at the University of Calgary in Canada.

Phone tip
For Knight, the study, which is the longest and deepest of its kind, represents the culmination of an ambitious experiment that began with a phone tip six years ago. "A hydrologist working in the Monterey area told me that there was a lot of interest in what's happening with saltwater intrusion along the coast and suggested it could be an interesting project for my group," said Knight, who is also affiliated with the Stanford Woods Institute for the Environment.

When Knight contacted local city officials for permission to start her survey, some of them couldn't quite believe their ears. "One's response to me was, 'I just spent hundreds of thousands of dollars drilling a well, and you're telling me you can do this by walking along the beach?"' she said.

Securing the required permits from cities and private landowners took close to a year, but in the fall of 2014, the team was ready to begin their survey. Over the course of about two weeks, researchers from Stanford University and the University of Calgary worked with engineers from the engineering company WorleyParsons to lay out a long string of electrical cables along the beach. The cables were punctuated by 4-foot steel electrodes sunk into the sand.

After a series of electrodes were in place, the team pumped tiny pulses of electricity through the connecting wire. The current spread below the ground, and by measuring the voltage between pairs of electrodes the team was able to create a resistivity map of the subsurface. Less resistance meant more saltwater lay below. Once the team surveyed a section of coastline they pulled out the stakes and repeated the process elsewhere.

The survey involved spending long hours in the sun hauling heavy equipment and painstakingly covering nearly the entire Monterey Bay coastline one mile at a time, but the effort paid off. "This is the first regional-scale view of the subsurface that clearly shows the impact of geology on fluid distribution as well as the influence of near-coast pumping," Pidlisecky said.

"Throughout the process we have actively connected with groundwater managers and technical professionals in the region, as well as the public at large. We are excited to take this engagement further with the publication and sharing of these results through an interactive 3-D web portal."

The data the team collected yielded a colorful, two-dimensional resistivity map of the coastline that reveals complex patterns of saltwater intrusion in the region down to a depth of 1,000 feet and highlights the interplay between the geology and human activities controlling the region's distribution of fresh- and saltwater.

For example, the team discovered a dynamic body, or "lens," of freshwater near Marina formed through infiltration from overlying storm water runoff ponds in an area that was otherwise undergoing saltwater intrusion. The map also showed that efforts by the Pajaro Water Management District to reduce groundwater pumping by providing recycled water to irrigators was working as planned.

Keith Van Der Maaten, general manager of the Marina Coast Water District, said the new findings could help fill in numerous gaps in their data of groundwater resources. "The current mapping of the freshwater-saltwater interface in our region has many issues and is misleading," Van Der Maaten said. "The ERT data will help give us a more complete picture so we can move forward with our water supply planning and groundwater sustainability efforts."

Follow-up airborne study
Since electrical resistivity is a property present in all materials, ERT could have applications beyond water management. "Any time what you are trying to image in the subsurface has a different resistivity than the material surrounding it, you should be able to use this method," Goebel said.

Knight is not finished with the Monterey Bay region just yet, however. Her team has partnered with the Marine Coast Water District to conduct a follow-up airborne helicopter survey that employs a different geophysical technique to map subsurface electrical resistivity in the region's inland areas.

"Instead of just one slice, the airborne survey is going to give us hundreds of slices and allow us to put together a three-dimensional picture of the underground freshwater distribution," Goebel said.

The study, titled "Resistivity Imaging Reveals Complex Pattern of Saltwater Intrusion Along Monterey Coast," was funded by Stanford's School of Earth, Energy and Environmental Sciences, the S.D. Bechtel Jr. Foundation and the National Sciences and Engineering Research Council of Canada.

More salt water in Egypt's Nile Delta putting millions at grave risk
Cairo (UPI) Mar 13, 2017
Increased human activity over the last few decades has slowly created a fresh water crisis that now looms for nearly 100 million people in Egypt, a scenario that scientists say could ultimately make the entire region uninhabitable by the end of this century. Most of Egypt's 90 million people live near the Lower Nile Valley and Delta because its nutrient-rich soil has for decades provide ... read more

Related Links
Stanford's School of Earth, Energy and Environmental Sciences
Water News - Science, Technology and Politics

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Nepal police demolish camp for earthquake displaced

Giant Ai Weiwei refugee installation to go on display in Prague

After fleeing homes, Iraqis near Mosul wait for tents

Priceless remains lie in ruins at Mosul museum

Sandia creates 3-D metasurfaces with optical possibilities

First exact model for diffusion in magnesium alloys

Switching oxygen on and off

Dramatic improvement in surface finishing of 3-D printing

Boaty McBoatface prepares for first Antarctic mission

Australia sees second year of Barrier Reef bleaching

Nigeria water shortages hit Boko Haram displaced

Could Leftover Heat from Last El Nino Fuel a New One

Looking for 'fingerprints' at the intersection of weather and climate

Ice age thermostat prevented extreme climate cooling

Humans to blame for bulk of Arctic sea ice loss: study

A perfect storm of fire and ice may have led to snowball Earth

This small molecule could have a big future in global food security

Researchers develop equation that helps to explain plant growth

Stabilizing soils with sulfates to improve their constructional properties

Future climate change will affect plants and soil differently

Madagascar cyclone deaths rise to 78, 400,000 affected

Japan recalls tsunami, nuclear tragedy six years on

Cyclone kills 50, affects 176,000 in Madagascar

Volcano breath: Measuring sulfur dioxide from space

Senegal extradites Guinean soldier wanted over massacre

.africa joins the internet

Nigerian military to probe rights abuse claims

11 Malian soldiers killed in attack on border base

Widespread platinum may help solve Clovis people mystery

Aboriginal hair shows 50,000 years connection to country

China's elderly live longer, but are less fit: study

Dartmouth study finds modern hunter-gathers relocate to maximize foraging efficiency

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement