Subscribe free to our newsletters via your
. Earth Science News .

Subscribe free to our newsletters via your

Smithsonian Scientists Report New Carbon Dioxide Study

Increased atmospheric CO2 stimulates soils to release, not store, CO2
by Staff Writers
Edgewater, MD (SPX) Mar 14, 2007
Researchers at the Smithsonian Environmental Research Center report the results of a six-year experiment in which doubling the atmospheric greenhouse gas carbon dioxide (CO2) in a scrub oak ecosystem caused a reduction in carbon storage in the soil.

The scientists said these findings add a new perspective on the capacity of Earth's soils to store carbon, and a measure of caution suggesting that elevated CO2, by altering microbial communities, may turn the soil from a potential carbon sink into a carbon source. This could offset some of the gains in carbon storage in plant biomass due to increased growth at elevated CO2.

Previous studies (including the present study) have shown that plants will respond to higher CO2 by increasing growth and taking up much of the excess carbon. This has led some to speculate that plants may be able to mitigate increases in atmospheric CO2 and that soils, which represent the largest and most stable terrestrial carbon pool, also may serve as a sink for excess carbon.

During the course of their study, Smithsonian scientists found that the amount of carbon in the ecosystem as a whole increased. However, they also saw a consistent loss in soil carbon under high CO2 conditions. The CO2 loss from soils offset about 52 percent of the additional carbon that had accumulated in the plants above ground and in the roots.

"We were surprised to find that these soils were losing soil carbon despite the fact that there was more plant growth," said Patrick Megonigal, a microbial ecologist at SERC and one of the study's authors. "We thought that higher plant growth at elevated CO2 would either add more carbon to soils, or at least leave it the same. We now need to consider a third possibility-the carbon already in soils will end up back in the atmosphere as a greenhouse gas."

Working at a long-term Smithsonian experimental CO2 site in a Florida scrub oak ecosystem, the researchers compared core samples from test plots that had been exposed to six years of elevated CO2 and core samples from plots exposed to ambient CO2. They also performed laboratory experiments on soils from both elevated and ambient plots to understand microbial composition and activity within each type of soil.

Their study reveals that added CO2 has a so-called "priming effect," stimulating certain microbes and increasing decomposition. Soils exposed to the elevated CO2 had higher relative abundances of fungi and higher activities of a soil carbon-degrading enzyme.

As the fungi and enzymes decompose the organic matter in the soil, they free up stored carbon and release it through respiration as CO2. With the priming effect of added CO2, more soil decomposition results in higher respiration rates, an overall loss of carbon and an increase in the release of CO2 from the soil.

earlier related report
Color Analysis Rapidly Predicts Carbon Content Of Soil
Ames IA (SPX) Mar 14 - Scientists report in the Soil Science Society of America Journal that soil color can be as accurate as the lab for carbon content Scientists at Iowa Sate University recently discovered that simply looking at soil color is reasonably as accurate as time-consuming and expensive laboratory tests. Soil color can be used as a simple, inexpensive method to predict measurements of soil organic content (SOC).

These measurements provide a lens through which researchers can assess soil quality and better understand global carbon cycles. Proper modeling of global carbon cycles and monitoring of carbon sequestration require wide-spread, accurate assessments of soil carbon contents.

The researchers compared field and laboratory measurements to determine the color and the organic content of soil samples from cultivated and native land in northeast Iowa.

"Soil color is one of the most obvious features of soil and organic matter has long been known as one of the primary pigmenting agents in soil," said Skye Willis, lead author of the Iowa State study that was published in the March-April issue of the Soil Science Society of America Journal.

Soil field descriptions made in the U.S. are based upon the Munsell color system - field scientists match soil color to standardized color chips based upon hue, chroma, and value. Additional laboratory tests, such as the chroma meter, offer rapid quantification of soil color. In general, darker soil colors indicate more SOC is present.

To test the efficiency of color analysis as a measure of SOC content on different landscapes, scientists collected soil samples from an agricultural field and an adjacent native prairie in northeast Iowa. Scientists analyzed the color of soil samples using three tests:

Soil cores were split in half and matched to a color chip in a Munsell Soil Color Book

The matrix color of soil layers were described according to Munsell Soil Book

Soil was ground and analyzed by a chroma meter, an instrument used to digitally record the color reflectance of soil sample.

From these three assessments, scientists determined the soil color (represented by hue, value and chroma) and predicted the SOC content.

According to Willis, "We found that typical description colors done by a soil scientist were nearly as effective in predicting SOC as the more expensive and tedious method of deriving colors by a chroma meter."

Color analysis is capable of predicting SOC values more accurately in common land areas (agricultural fields) in comparison to less common land areas (native prairies). Additional studies are needed to better predict SOC under native soil conditions.

This rapid SOC measurement will increase the understanding, prediction, and modeling efficiency of carbon distribution across fields, watersheds, and larger regions as the current methods of characterizing SOC are costly and time-consuming. As an alternative to direct measurements of SOC, soil color can be used as an efficient predictor of SOC soil contents.

Study authors (first report) are: Karen Carney and Bruce Huntgate, SERC post-doctoral fellows at the time of the study, who now work at the U.S. Agency for International Development and Northern Arizona University, respectively; Bert Drake, SERC plant physiologist; and Patrick Megonigal, SERC microbial ecologist. The study will be published this week in Proceedings of the National Academy of Sciences.

Email This Article

Related Links
Soil Science Society of America Journal
The American Society of Agronomy
Save the Forests at Wood Pile

Scientists Read History Of Rocks With Unprecedented Precision
Amherst, MA (SPX) Mar 13, 2007
Assigning dates to the events in the life of a rock-for example, a collision with a piece of continent, or a journey through the Earth's crust-has long challenged geologists, as the events themselves can confound evidence of the past. But now, armed with a custom-built machine known as the Ultrachron, University of Massachusetts Amherst scientists are refining a technique that allows them to pin dates to geologic processes with unprecedented precision.

  • Indonesia Allots One Billion Dollars To Prevent Floods
  • Relief Flows Into Indonesia Quake Area As Death Toll Revised Down
  • Global Disaster Bill Declines In 2006 Says Swiss Re
  • Death And Destruction After Powerful Indonesia Quake

  • Climate Shifts And The Probability Of Randomness
  • EU Summit Seeks Unity On Tackling Global Warming
  • Banning New Coal Power Plants Will Slow Warming
  • The U.N.'s War On Global Warming

  • CryoSat-2 On The Road To Recovery
  • Space Scientists To Take The Pulse Of Planet Earth
  • Climate Change View Clearer With New Oceans Satellite
  • Satellite Scientists Set To Descend On Hobart

  • New Lithium-Ion Battery Technology Created
  • Unlocking The Secrets Of High-Temperature Superconductors
  • China Bans New Small Coal-Based Power Generators
  • Progress Made in Biomass-to-Biofuels Conversion Process

  • Genome Sequence Shows What Makes Bacteria Dangerous For Troops In Iraq
  • A Year Of Added Life More Valuable For The Young
  • Researchers Reconstruct Spread Of Bird Flu From China
  • Troubling Trends In AIDS Cases

  • Remote Sheep Population Resists Genetic Drift
  • Social Tolerance Allows Bonobos To Outperform Chimpanzees On A Cooperative Task
  • Why Do Birds Migrate
  • Some Corals Might Be Able To Fight The Heat

  • Bacterium Could Treat PCBs Without The Need For Dredging
  • Asian Pollution Linked To Stronger Pacific Storm System
  • Canada's Oil Sands To Keep Polluting
  • As An Economy Blossoms An Ancient Capital Suffocates

  • Getting On Your Nerves And Repairing Them
  • Human Rights In Darfur
  • Aging Boosts Chances That A Family Line Will Be Long-Lived
  • These Legs Were Made for Fighting Not Just Climbing Over You

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement