. Earth Science News .

Space Observatory Provides Clues to Creation of Earth's Oceans
by Staff Writers
Pasadena CA (JPL) Oct 06, 2011

Using the Herschel Space Observatory, astronomers have discovered that comet Hartley 2 possesses a ratio of "heavy water" to light, or normal, water that matches what's found in Earth's oceans. Image credit: NASA/JPL-Caltech

Astronomers have found a new cosmic source for the same kind of water that appeared on Earth billions of years ago and created the oceans. The findings may help explain how Earth's surface ended up covered in water.

New measurements from the Herschel Space Observatory show that comet Hartley 2, which comes from the distant Kuiper Belt, contains water with the same chemical signature as Earth's oceans.

This remote region of the solar system, some 30 to 50 times as far away as the distance between Earth and the sun, is home to icy, rocky bodies including Pluto, other dwarf planets and innumerable comets.

"Our results with Herschel suggest that comets could have played a major role in bringing vast amounts of water to an early Earth," said Dariusz Lis, senior research associate in physics at the California Institute of Technology in Pasadena and co-author of a new paper in the journal Nature, published online Oct. 5.

"This finding substantially expands the reservoir of Earth ocean-like water in the solar system to now include icy bodies originating in the Kuiper Belt."

Scientists theorize Earth started out hot and dry, so that water critical for life must have been delivered millions of years later by asteroid and comet impacts. Until now, none of the comets previously studied contained water like Earth's.

However, Herschel's observations of Hartley 2, the first in-depth look at water in a comet from the Kuiper Belt, paint a different picture.

Herschel peered into the comet's coma, or thin, gaseous atmosphere. The coma develops as frozen materials inside a comet vaporize while on approach to the sun. This glowing envelope surrounds the comet's "icy dirtball"-like core and streams behind the object in a characteristic tail.

Herschel detected the signature of vaporized water in this coma and, to the surprise of the scientists, Hartley 2 possessed half as much "heavy water" as other comets analyzed to date.

In heavy water, one of the two normal hydrogen atoms has been replaced by the heavy hydrogen isotope known as deuterium. The ratio between heavy water and light, or regular, water in Hartley 2 is the same as the water on Earth's surface. The amount of heavy water in a comet is related to the environment where the comet formed.

By tracking the path of Hartley 2 as it swoops into Earth's neighborhood in the inner solar system every six-and-a-`half years, astronomers know that it comes from the Kuiper Belt.

The five comets besides Hartley 2 whose heavy-water-to-regular-water ratios have been obtained all come from an even more distant region in the solar system called the Oort Cloud. This swarm of bodies, 10,000 times farther afield than the Kuiper Belt, is the wellspring for most documented comets.

Given the higher ratios of heavy water seen in Oort Cloud comets compared to Earth's oceans, astronomers had concluded that the contribution by comets to Earth's total water volume stood at approximately 10 percent.

Asteroids, which are found mostly in a band between Mars and Jupiter but occasionally stray into Earth's vicinity, looked like the major depositors. The new results, however, point to Kuiper Belt comets having performed a previously underappreciated service in bearing water to Earth.

How these objects ever came to possess the telltale oceanic water is puzzling. Astronomers had expected Kuiper Belt comets to have even more heavy water than Oort Cloud comets because the latter are thought to have formed closer to the sun than those in the Kuiper Belt.

Therefore, Oort Cloud bodies should have had less frozen heavy water locked in them prior to their ejection to the fringes as the solar system evolved.

"Our study indicates that our understanding of the distribution of the lightest elements and their isotopes, as well as the dynamics of the early solar system, is incomplete," said co-author Geoffrey Blake, professor of planetary science and chemistry at Caltech.

"In the early solar system, comets and asteroids must have been moving all over the place, and it appears that some of them crash-landed on our planet and made our oceans."

Related Links
Herschel Space Observatory at ESA
Herschel Space Observatory at NASA
Herschel Space Observatory at Caltech
Water News - Science, Technology and Politics

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

US Coastguard to help drought-hit N.Z. territory
Wellington (AFP) Oct 5, 2011
The US Coastguard will ship drinking water to a remote New Zealand territory in the Pacific which faces a state of emergency due to severe drought, Wellington said Wednesday. The Coastguard ship "Walnut" will depart American Samoa on Thursday for Tokelau, a New Zealand-administered territory of about 1,400 people which has less than a week's supply of water left, Foreign Minister Murray McCu ... read more

Japan nuclear plant worker dies

Nuclear contamination found beyond Japan no-go zone

New modelling results link natural resources and armed conflicts

Experts sound alarm over disaster planning

SSTL redefines the cost of radar imaging with NovaSAR-S

EDRS: an independent data-relay system for Europe becoming reality

Samsung seeks sales ban on new iPhone

On sale now in China: the 'iPhone 5'

Space Observatory Provides Clues to Creation of Earth's Oceans

Chilean court overturns ban on giant Patagonia dam

Decline and recovery of coral reefs linked to 700 years of human and environmental activity

A year after Nobel, Norwegian salmon off the menu in China

Rising carbon dioxide levels at end of last ice age not tied to Pacific Ocean

Swiss warn of massive ice chunk breaking off glacier

Chinese target Arctic with Iceland land deal: experts

Model provides successful seasonal forecast for the fate of Arctic sea ice

Floods drown Asia's rice bowl

Productivity of land plants may be greater than previously thought

Petition demands US label genetically engineered food

Micro-breweries take on local flavour in China

Philippine typhoon death toll reaches 82

Tenerife geology discovery is among 'world's best'

Indian Ocean tsunami alert system to be tested on Oct 12

Worst Cambodian floods in a decade kill 167

Food crisis looming in Sudan: UN agency

Kenya tries to contact French woman's abductors in Somalia

Berkeley Lab Tests Cookstoves for Haiti

Guyana opposition warns foreign bauxite firms

Ultrasounds worsen Asia women shortage: UN

What can magnetic resonance tractography teach us about human brain anatomy?

Many roads lead to Asia

Female promiscuity can rescue populations from harmful effects of inbreeding


The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement