Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Earth Science News .




CLIMATE SCIENCE
Statistical Analysis Projects Future Temperatures In North America
by Pam Frost Gorder
Columbus OH (SPX) May 16, 2012


Statisticians at Ohio State University and the University of Cincinnati used spatial statistics and different regional climate models to build a consensus of likely temperature changes across North America. In this image, the color intensity corresponds to the temperature change expected by 2070, measured in degrees Celsius. The greatest temperature increases occur in the north, particularly in the Hudson Bay. Image by Noel Cressie and Emily Kang, courtesy of Ohio State University.

For the first time, researchers have been able to combine different climate models using spatial statistics - to project future seasonal temperature changes in regions across North America. They performed advanced statistical analysis on two different North American regional climate models and were able to estimate projections of temperature changes for the years 2041 to 2070, as well as the certainty of those projections.

The analysis, developed by statisticians at Ohio State University, examines groups of regional climate models, finds the commonalities between them, and determines how much weight each individual climate projection should get in a consensus climate estimate.

Through maps on the statisticians' website, people can see how their own region's temperature will likely change by 2070 - overall, and for individual seasons of the year.

Given the complexity and variety of climate models produced by different research groups around the world, there is a need for a tool that can analyze groups of them together, explained Noel Cressie, professor of statistics and director of Ohio State's Program in Spatial Statistics and Environmental Statistics.

Cressie and former graduate student Emily Kang, now at the University of Cincinnati, present the statistical analysis in a paper published in the International Journal of Applied Earth Observation and Geoinformation.

"One of the criticisms from climate-change skeptics is that different climate models give different results, so they argue that they don't know what to believe," he said.

"We wanted to develop a way to determine the likelihood of different outcomes, and combine them into a consensus climate projection. We show that there are shared conclusions upon which scientists can agree with some certainty, and we are able to statistically quantify that certainty."

For their initial analysis, Cressie and Kang chose to combine two regional climate models developed for the North American Regional Climate Change Assessment Program.

Though the models produced a wide variety of climate variables, the researchers focused on temperatures during a 100-year period: first, the climate models' temperature values from 1971 to 2000, and then the climate models' temperature values projected for 2041 to 2070. The data were broken down into blocks of area 50 kilometers (about 30 miles) on a side, throughout North America.

Averaging the results over those individual blocks, Cressie and Kang's statistical analysis estimated that average land temperatures across North America will rise around 2.5 degrees Celsius (4.5 degrees Fahrenheit) by 2070.

That result is in agreement with the findings of the United Nations Intergovernmental Panel on Climate Change, which suggest that under the same emissions scenario as used by NARCCAP, global average temperatures will rise 2.4 degrees Celsius (4.3 degrees Fahrenheit) by 2070.

Cressie and Kang's analysis is for North America - and not only estimates average land temperature rise, but regional temperature rise for all four seasons of the year.

Cressie cautioned that this first study is based on a combination of a small number of models. Nevertheless, he continued, the statistical computations are scalable to a larger number of models. The study shows that climate models can indeed be combined to achieve consensus, and the certainty of that consensus can be quantified.

The statistical analysis could be used to combine climate models from any region in the world, though, he added, it would require an expert spatial statistician to modify the analysis for other settings.

The key is a special combination of statistical analysis methods that Cressie pioneered, which use spatial statistical models in what researchers call Bayesian hierarchical statistical analyses.

The latter techniques come from Bayesian statistics, which allows researchers to quantify the certainty associated with any particular model outcome. All data sources and models are more or less certain, Cressie explained, and it is the quantification of these certainties that are the building blocks of a Bayesian analysis.

In the case of the two North American regional climate models, his Bayesian analysis technique was able to give a range of possible temperature changes that includes the true temperature change with 95 percent probability.

After producing average maps for all of North America, the researchers took their analysis a step further and examined temperature changes for the four seasons. On their website, they show those seasonal changes for regions in the Hudson Bay, the Great Lakes, the Midwest, and the Rocky Mountains.

In the future, the region in the Hudson Bay will likely experience larger temperature swings than the others, they found.

That Canadian region in the northeast part of the continent is likely to experience the biggest change over the winter months, with temperatures estimated to rise an average of about 6 degrees Celsius (10.7 degrees Fahrenheit) - possibly because ice reflects less energy away from the Earth's surface as it melts. Hudson Bay summers, on the other hand, are estimated to experience only an increase of about 1.2 degrees Celsius (2.1 degrees Fahrenheit).

According to the researchers' statistical analysis, the Midwest and Great Lakes regions will experience a rise in temperature of about 2.8 degrees Celsius (5 degrees Fahrenheit), regardless of season. The Rocky Mountains region shows greater projected increases in the summer (about 3.5 degrees Celsius, or 6.3 degrees Fahrenheit) than in the winter (about 2.3 degrees Celsius, or 4.1 degrees Fahrenheit).

In the future, the researchers could consider other climate variables in their analysis, such as precipitation.

.


Related Links
Ohio State University
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CLIMATE SCIENCE
Plants disappear as a result of climate changes
Gothenburg, Sweden (SPX) May 15, 2012
Climate changes mean that species are disappearing from European mountain regions. This is shown by new research involving biologists from the University of Gothenburg, the results of which are now being publishing in the journals Nature and Science. Within the framework of the GLORIA project, researchers from all over Europe have gathered information about alpine plants from all European mounta ... read more


CLIMATE SCIENCE
Lebanese army deploys in Tripoli areas hit by fighting

German insurer Allianz says profits soar 60%

Economists list cheapest ways to save the world

2012 not end of world for Mayans after all

CLIMATE SCIENCE
Record data transmission speed set

Samsung on top as mobile phone sales dip: survey

"Social Network" writer to pen Steve Jobs film script

US class-action ebook price-fixing suit can proceed

CLIMATE SCIENCE
World Bank $275 mn loan to tackle Philippines sewage

Groundwater pumping leads to sea level rise, cancels out effect of dams

Chile supreme court halts Patagonia dam project

US gives Zambia $355 mln for water projects

CLIMATE SCIENCE
Russia's Antarctic probes to be tested in Ladoga Lake

Climate scientists discover new weak point of the Antarctic ice sheet

Antarctic octopuses 10,000km apart "genetically similar"

Visiting Snowball Earth

CLIMATE SCIENCE
Cambodian girl killed in land row: official

Wasted milk is a real drain on our resources

Tiny plants could cut costs, shrink environmental footprint

Russia 'a growing grain power'

CLIMATE SCIENCE
Georgia flood disaster exposes capital's slums

6.0-magnitude quake hits Papua New Guinea: USGS

First tropical storm of eastern Pacific season off Mexico

Scientists 'read' the ash from the Icelandic volcano 2 years after its eruption

CLIMATE SCIENCE
Algeria's political battle: Army v. spooks

DRCongo forces bomb mutineers in famed African park

Refugees flee new clashes in eastern DRCongo

MSU plan would control deadly tsetse fly

CLIMATE SCIENCE
Anthropologist finds explanation for hominin brain evolution in famous fossil

Wall art from France said world's oldest

Extra gene drove instant leap in human brain evolution

Tablet in Turkey contains unknown language




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement