Subscribe free to our newsletters via your
. Earth Science News .

Subscribe free to our newsletters via your

Synchronized leaf aging in the Amazon responsible for seasonal increases in photosynthesis
by Staff Writers
Upton NY (SPX) Feb 29, 2016

Pictures like this one, taken from special cameras installed on towers above the rainforest canopy, recorded the changes in hundreds of individual tree crowns over the seasons in three different forests across the central Amazon. Image courtesy Aline Lopes, INPA (National Institute of Amazonian Research). For a larger version of this image please go here.

One hundred and fifty feet above the ground in the Amazonian rainforest, a vast ocean of green spreads out in every direction. The rainforest canopy is made up of mostly tropical evergreen trees, which take in enormous amounts of carbon from Earth's atmosphere. Understanding the carbon cycle in these forests - how carbon is stored in plants and soil and then returned to the atmosphere - is crucial to creating accurate models that predict how global climate will change in the future. Key to that puzzle is understanding photosynthesis in tropical forests.

"We want to understand whether photosynthesis in tropical evergreen forests is driven primarily by seasonal climate or by the internal dynamics of the rainforest," said Jin Wu, a post-doctoral research associate at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory. Wu is the lead author on a study completed while he was a Ph.D. student with senior author Scott Saleska, Associate Professor of Ecology and Evolutionary Biology at the University of Arizona, published online in the February 26 issue of Science.

Wu, together with other members of Scott Saleska's lab and international collaborators from Brazil, Australia, and Japan found that new leaf growth is synchronized with old leaf loss in the dry-season of the Amazon rainforest. This shifts the makeup of the tree canopy towards younger leaves, which display higher photosynthetic capacity, and explains the large observed seasonal increases in photosynthesis throughout the ecosystem.

Climate models have long represented the tropics in an overly simplistic way, often due to the lack of data from these hard to reach regions. That view assumed that tropical forests have consistent canopy greenness throughout the year - unlike the dramatic seasonal changes in temperate forests, heralded by vibrant reds and yellows.

"At the landscape level, it always looks evergreen," Wu said. But broad-scale images - for example, those taken by satellites - often can't discern the ground level subtleties that have a large impact on the level of photosynthesis. "Evergreen doesn't mean there are no internal dynamics," Wu said.

Seeing the trees through the forest
To better examine the impact of these internal dynamics on photosynthesis, Wu and his colleagues used all available data from four sites in the Amazon with a wide range of tree species, rainfall gradients, and soil types: three spots near the equator along the Amazon River, and one water-limited site on the southern side of the Amazon.

At these sites, the researchers measured variables that allowed them to calculate the aggregated photosynthesis rate across the whole forest. They found that the derived photosynthetic capacity from these measurements is seasonal. That is, though the forest is evergreen, the internal photosynthetic machinery changes throughout the year.

To determine what caused these changes, they used tower-mounted cameras perched over the treetops to survey a plot about a third of a mile square, observing the changing quantities and qualities of leaves in the canopy crowns. They found that leaf area increased significantly during the dry season, but these increases precede photosynthetic capacity by at least 1 month, which is increased twice as much as would have been expected from the increase in leaf area alone.

"It's not just the quantity of leaves that makes a difference. In tropical evergreen forests, the overall quantity of leaves doesn't change that much, so the quality of leaves is an important driver in photosynthesis," Wu said.

Leaf age matters
To investigate the quality of the leaves, expert tree climbers accompanied the researchers as they trekked into the jungle, scaling the trees to tag individual leaves from the time they emerge and take photographs weekly and then monthly. This work revealed important changes in leaf biophysical and physiological properties through their life cycles.

"Photosynthesis is like a metabolism," Wu said. "As human beings, our metabolic rates are strongly age-dependent. Leaves are similar. During their first two months, leaves expand and acquire more chlorophyll, becoming greener." But Wu and his team found that leaves don't reach their photosynthetic peak until they are fully expanded at two to five months old. At that point, they are more efficient in absorbing light and more efficient in converting light to food - that is, stored carbon. After six months, their photosynthetic rates decline as they enter 'old' age.

The effect of leaf age on physiology explained the surprisingly high seasonal changes in photosynthetic capacity.

Wu said that incorporating these details about tropical evergreen leaves into earth system models will allow for more accurate predictors of carbon exchange and, ultimately, their feedbacks to climate.

Taking the Tropics Into Account
"Tropical rainforests are biologically really important, but our understanding is so limited because the available data is very limited," Wu said.

He is continuing his PhD research as a post-doc in a program designed to remedy the paucity of data from this region, the Next Generation Ecosystem Experiments - Tropics (NGEE-Tropics). This project is supported by the DOE Office of Science and led by Lawrence Berkeley National Laboratory's Earth Sciences Division with partner institutes including Brookhaven.

NGEE-Tropics is an ambitious 10-year project to dramatically reduce the uncertainty in climate models and increase scientific understanding of how tropical forest ecosystems will respond to climate and atmospheric change.

Wu was recently in Panama, getting up close and personal with the rainforest. Together with Brookhaven scientists Kim Ely, Shawn Serbin, and Alistair Rogers, he is studying the impact of the El Nino-Southern Oscillation (ENSO) on the response of photosynthesis to drought, and building relationships between important physiological properties that drive model uncertainty and other observations.

"If we want to advance our understanding about the terrestrial carbon cycle in tropical forests, we need to know what types of leaves are present at what times of year, and their physiological properties," he said. "We can improve our models with this data, and better understand what to look for in the future with remote sensing from tower-mounted cameras, aircraft, and satellites."


Related Links
Brookhaven National Laboratory
Forestry News - Global and Local News, Science and Application

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
NASA, Partner Space Agencies Measure Forests In Gabon
Greenbelt MD (SPX) Feb 26, 2016
A contingent of NASA airborne instruments and scientists on the ground has joined colleagues from space agencies in Gabon and Europe this month to study the dense African tropical forests in Gabon. Gabon, a Central African country slightly smaller than the state of Colorado, is home to one of the most pristine rainforests on the planet. During the two-week-long NASA campaign, a collaborati ... read more

Brazil police charge seven in Samarco mine deaths: reports

MH370 lawsuits gain pace as two-year deadline nears

Aid finally getting to Fiji cyclone victims

Nuclear water: Fukushima still faces contamination crisis

New research introduces 'pause button' for boiling

Real or virtual - can we tell the difference

Breakthrough in dynamically variable negative stiffness structures

Eco-friendly food packaging material doubles shelf-life of food products

Sea-level rise past and future: Robust estimates for coastal planners

Climate change speeds up gully erosion

Researchers sequence seagrass genome, unlocking valuable resource

Herring fishery's strength is in the sum of its parts, study finds

OGC requests information to guide Arctic Spatial Data Pilot

Australian icebreaker runs aground in Antarctica

Study of tundra soil demonstrates vulnerability of ecosystem to climate warming

Ice age blob of warm ocean water discovered south of Greenland

New wheat genetic advancements aimed at yield enhancement

China's Jack Ma buys French vineyard

PM tells drought-stricken Thailand to cut rice production

Scientists draw first European earthworm map

Fiji eyes more cyclone aid as toll hits 44

Fiji cyclone death toll rises to 42: official

Cyclone death toll hits 29 as Fiji eyes long clean-up

Christchurch commemorates devastating quake

Voice of China: Beijing seeks African friends and influence

Kenya army says it killed Shebab intelligence chief

Three soldiers get life for I.Coast military chief's murder

Saving the wildlife 'miracle' of Congo's Garamba park

Easter Island not destroyed by war, analysis of 'spear points' shows

Neanderthals and modern H. sapiens crossbred over 100,000 years ago

Neanderthals mated with modern humans much earlier than previously thought

Modern 'Indiana Jones' on mission to save antiquities

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.