|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Joseph Blumberg Dartmouth UK (SPX) Nov 20, 2012
Dartmouth plant biologist C. Robertson (Rob) McClung is not your typical clock-watcher. His clocks are internal, biological, and operate in circadian rhythms-cycles based on a 24-hour period. Living organisms depend upon these clocks to keep pace with the Earth's daily rotation and the recurring changes it imposes on the environment. These clocks allow the plant or animal to anticipate the changes and adapt to them by modifying its biology, behavior, and biochemistry. "If you know that the sun is going to go down, and if you are a photosynthetic plant, you have to readjust your metabolism in order to make it through the night," says McClung, the Patricia F. and Williams B. Hale 1944 Professor in the Arts and Sciences.
Seeking Knowledge Among the Weeds According to the National Institutes of Health, this member of the mustard family is the model organism for studies of the cellular and molecular biology of flowering plants. "Because plants are closely related, it is quite likely that knowledge derived from Arabidopsis studies can be readily transferred to agronomically important species," says McClung.
Water and the Changing Climate "In the context of climate change and the need to exploit increasingly marginal habitats, fuller understanding of clock mechanisms may offer strategies to improve crop productivity," says McClung. "We need to know how an organism measures time and how it uses that information to coordinate its physiology and behavior." Water is the landscape on which biological clocks and climate change intersect. Agriculture consumes the vast majority of our water, and warmer and dryer conditions are predicted for much of the agricultural land of the United States. This is based on our current understanding of the changes predicted to be associated with global warming, and in this scenario our aquatic resources will become increasingly scarce. Water is lost during the gas exchange that takes place in photosynthesis-carbon dioxide in, oxygen out-through small pores in the surface of leaves that periodically open and close under the control of a biological clock. Exercising control over this clock could be a means of conserving water. "We know that these little cells on the surface of the leaf are controlled by the clock," says McClung. "It could be that different clocks regulate it slightly differently, and we would like to find the best clock, fine-tune it, and perhaps optimize the ability to get CO2 in without losing water." Water figures prominently in another aspect of plant physiology. Water moves up through the stem to the leaves, involving proteins called aquaporins. "There is a big family of genes that encode aquaporins, and in Arabidopsis the circadian clock governs the expression cycles of about a third of those genes," says McClung. "That suggests there is a mechanism to actually regulate this hydraulic conductivity over time, constituting another instance where the clock is involved in water use efficiency."
New Frontiers "We have mapped 10 genetic regions that are associated with water use efficiency," says McClung. "We have also traced circadian parameters to most of those same areas, suggesting a link between the two. This association suggests that we could potentially use the clock to manipulate water use efficiency." In a related project, McClung will be working with soybeans, attempting to correlate circadian period length with latitude. "If we can understand the clock, we might then manipulate the clock in ways to achieve desired goals, including water use efficiency and better yield."
Why and How? "Whether or not we achieve that increase or whether it allows us to fertilize a little less and so pollute a little less but maintain the same productivity level, anything in the net direction that is positive is going to help," he says. "We can't necessarily say exactly how it will help, but I think it's not unreasonable to think that this very basic research can have a real world impact, and one hopes it will."
Related Links Dartmouth Climate Science News - Modeling, Mitigation Adaptation
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |