. Earth Science News .




.
FLORA AND FAUNA
The Mighty Mesh Of Biofilms
by Staff Writers
Boston MA (SPX) Jan 27, 2012

Top view of a Bacillus subtilis colony in conditions where extracellular matrix is produced, leading to biofilm formation.

New research at Harvard explains how bacterial biofilms expand to form slimy mats on teeth, pipes, surgical instruments, and crops. Through experiment and mathematical analysis, researchers have shown that the extracellular matrix (ECM), a mesh of proteins and sugars that can form outside bacterial cells, creates osmotic pressure that forces biofilms to swell and spread.

The ECM mechanism is so powerful that it can increase the radius of some biofilms five-fold within 24 hours.

The results have been published in the Proceedings of the National Academy of Science.

Biofilms, large colonies of bacteria that adhere to surfaces, can be harmful in a wide range of settings, resulting in tooth decay, hospital infections, agricultural damage, and corrosion. Finding ways to control or eliminate biofilms is a priority for many industries.

In order for a biofilm to grow, a group of bacterial cells must first adhere to a surface and then proliferate and spread. When a vast number of cells are present, this can translate into the creation of a filmy surface spanning several meters.

"Our work challenges the common picture of biofilms as sedentary communities by showing how cells in a biofilm cooperate to colonize surfaces," says lead author Agnese Seminara, a research associate at the Harvard School of Engineering and Applied Sciences (SEAS).

Several types of biofilms have been characterized based on composition and antibiotic resistance, but until now it has not been clear what roles the whip-like flagella and the ECM play in the outward movement of cells.

While the presence of a flagellum has traditionally been associated with greater movement capability, the new research has found that a flagellum actually confers little advantage in the formation of biofilms. In the Harvard study, mutant bacteria lacking flagella were able to spread at almost the same rate as the wild-type (natural) ones. Mutants that could not secrete the ECM, however, showed stunted growth.

The team of physicists, mathematicians, chemists, and biologists examined the formation of biofilms in Bacillus subtilis, a type of rod-shaped bacteria often found in soil. Their focus on this particular species was led by Roberto Kolter, Professor of Microbiology and Immunobiology at Harvard Medical School, an expert on biofilms and the genomics of B. subtilis.

"This project establishes a link between the phenotype, the physically observable traits of biofilm growth, and the genetic underpinning that allows spreading to happen in B. subtilis," notes co-principal investigator Michael Brenner, the Glover Professor of Applied Mathematics and Applied Physics at SEAS.

The researchers had speculated about a possible connection between the biofilm's quest for nutrition and the process of spreading. Because biofilms absorb nutrients through their exposed surface area, they can only swell vertically to a certain point before the surface-area-to-volume ratio makes it impossible to adequately nourish every cell.

At this point, the biofilm must begin to spread outward so that the surface area increases along with the number of cells.

The ECM, a complex mesh of proteins, sugars, and other components outside of the individual cells, holds the key to one aspect of this movement: it apparently increases osmotic pressure within the biofilm.

In response to the increased pressure, the biofilm immediately absorbs water from its surroundings, causing the entire mass to swell upward. The final change in the shape of the biofilm is due to a combination of this swelling and the horizontal spreading that follows.

Seminara and Brenner created a mathematical model that mirrored many of the team's physical observations. The model supported the experimental observations; by considering the relationship between swelling and spreading, they were able to find the "critical" time at which horizontal outward motion begins.

"This work is led by theoretical predictions which were tested by experiment and proved to be correct," reflects co-principal investigator David Weitz, Mallinckrodt Professor of Physics and Applied Physics at SEAS and Co-Director of the BASF Advanced Research Initiative at Harvard. "

The results also demonstrate how simple physical principles can provide considerable insight into the behavior of biofilms."

The motion of biofilms represents only a small part of a complex subject. Further research will investigate how biofilms adapt and possibly manipulate their environment. The ultimate goal is to alter biofilms' behavior to minimize their harmful effects.

"The natural question at this point is: do cells actively control biofilm expansion and can they direct it toward desired targets?" says Seminara. "This is a first step toward understanding the striking evolutionary success of these ubiquitous organisms, and it may open the way to unconventional methods of biofilm control."

Seminara, Brenner, and Weitz worked with Thomas Angelini, an Assistant Professor at the University of Florida and a former member of the Weitz lab; James Wilking, a SEAS research associate in applied chemistry; Senan Ebrahim '12, an undergraduate at Harvard; and Hera Vlamakis and Roberto Kolter of Harvard Medical School.

The paper is available here

Related Links
Harvard School of Engineering and Applied Sciences
Darwin Today At TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FLORA AND FAUNA
The Evolution of Division of Labour
Vienna, Austria (SPX) Jan 27, 2012
Division of labour is not only a defining feature of human societies but is also omnipresent among the building blocks of biological organisms and is considered a major theme of evolution. Theoretical Biologists Claus Rueffler and Joachim Hermisson from Vienna University in collaboration with Gunter P. Wagner from Yale University identified necessary conditions under which division of labo ... read more


FLORA AND FAUNA
N.Z. quake bill to approach $25 bn: central bank

NOAA satellites aid in the rescue of 207 people in 2011

Radiation fears slow Japan tsunami clear-up

Five Japan committees keep no disaster records

FLORA AND FAUNA
Catalyzing new uses for diesel by-products

Supermaterial goes superpermeable

Scientists create new atomic X-ray laser

World's most powerful X-ray laser creates 2-million-degree matter

FLORA AND FAUNA
Scientists Aboard Iberian Coast Ocean Drilling Expedition Report Early Findings

Carbon dioxide is driving fish crazy

Iraq water crisis could stir ethnic clash

Detecting Detrimental Change in Coral Reefs

FLORA AND FAUNA
Norway wants to block China from Arctic Council: report

Satellites detect abundance of fresh water in the Arctic

Alaskan farewell to Russian tanker after fuel run

Russian ship leaves after ice-bound Alaska fuel run

FLORA AND FAUNA
Fungi-filled forests are critical for endangered orchids

Barclays tops roll of shame at Davos

Improving crops from the roots up

Grafted watermelon plants take in more pesticides

FLORA AND FAUNA
Flood survivors rebuild in Philippine danger zones

Satellite snaps Costa Rica volcano action

Haiti should brace for more devastating quakes: study

Waiting for Death Valley's Big Bang

FLORA AND FAUNA
New AU headquarters marks strong China-Africa ties

African Union unveils Chinese-built headquarters

US Navy SEALs prove their mettle again

Former colonial soldiers in Mozambique hope for pensions

FLORA AND FAUNA
Following the first steps out of Africa

Arabia saw first humans out of Africa

The price of your soul: How the brain decides whether to 'sell out'

Penn Researchers Help Solve Questions About Ethiopians' High-Altitude Adaptations


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement