Earth Science News  





. The Origin Of The Brain Lies In A Worm

Many animals have evolved complex nervous systems throughout the course of evolution, but their architectures can differ substantially between species. While vertebrates have a CNS in the shape of a spinal cord running along their backs, insects and annelid worms like the earthworm have a rope-ladder-like chain of nerve cell clusters on their belly side. Other invertebrates on the other hand have their nerve cells distributed diffusely over their body. Yet, all these species descend from a common ancestor called Urbilateria. If this ancestor already possessed a nervous system, what it might have looked like and how it gave rise to the diversity of nervous systems seen in animals today is what Detlev Arendt and his group study at EMBL. To do so, they investigate the nervous system of a marine annelid worm called Platynereis dumerilii.
by Staff Writers
Heidelberg, Germany (SPX) Apr 23, 2007
The rise of the central nervous system in animal evolution has puzzled scientists for centuries. Vertebrates, insects and worms evolved from the same ancestor, but their CNSs are different and were thought to have evolved only after their lineages had split during evolution.

Researchers from the European Molecular Biology Laboratory [EMBL] in Heidelberg now reveal that the vertebrate nervous system is probably much older than expected. The study, which is published in the current issue of Cell, suggests that the last common ancestor of vertebrates, insects and worms already had a centralised nervous system resembling that of vertebrates today.

Many animals have evolved complex nervous systems throughout the course of evolution, but their architectures can differ substantially between species. While vertebrates have a CNS in the shape of a spinal cord running along their backs, insects and annelid worms like the earthworm have a rope-ladder-like chain of nerve cell clusters on their belly side.

Other invertebrates on the other hand have their nerve cells distributed diffusely over their body. Yet, all these species descend from a common ancestor called Urbilateria. If this ancestor already possessed a nervous system, what it might have looked like and how it gave rise to the diversity of nervous systems seen in animals today is what Detlev Arendt and his group study at EMBL. To do so, they investigate the nervous system of a marine annelid worm called Platynereis dumerilii.

"Platynereis can be considered a living fossil," says Arendt, "it still lives in the same environment as the last common ancestors used to and has preserved many ancestral features, including a prototype invertebrate CNS."

Arendt and his group investigated how the developing CNS in Platynereis embryos gets subdivided into the regions that later on give rise to the different CNS structures. The regions are defined by the unique combination of regulatory genes expressed, which endow every type of neuron with a specific molecular fingerprint. Comparing the molecular fingerpint of Platynereis nerve cells with what is known about vertebrates revealed surprising similarities.

"Our findings were overwhelming," says Alexandru Denes, who carried out the research in Arendt's lab. "The molecular anatomy of the developing CNS turned out to be virtually the same in vertebrates and Platynereis. Corresponding regions give rise to neuron types with similar molecular fingerprints and these neurons also go on to form the same neural structures in annelid worm and vertebrate."

"Such a complex arrangement could not have been invented twice throughout evolution, it must be the same system," adds Gáspár Jekely, a researcher from Arendt's lab, who contributed essentially to the study. "It looks like Platynereis and vertebrates have inherited the organisation of their CNS from their remote common ancestors."

The findings provide strong evidence for a theory that was first put forward by zoologist Anton Dohrn in 1875. It states that vertebrate and annelid CNS are of common descent and vertebrates have turned themselves upside down throughout the course of evolution.

"This explains perfectly why we find the same centralised CNS on the backside of vertebrates and the bellyside of Platynereis," Arendt says. "How the inversion occurred and how other invertebrates have modified the ancestral CNS throughout evolution are the next exciting questions for evolutionary biologists."

A.S. Denes, G. Jekely, D. Arendt et al., Conserved mediolateral molecular architecture of the annelid trunk neuroectoderm reveals common ancestry of bilaterian nervous system centralisation, Cell, 20 April 2007

Email This Article

Related Links
European Molecular Biology Laboratory
Darwin Today At TerraDaily.com

Gene Study Shows Three Distinct Groups Of Chimpanzees
Chicago IL (SPX) Apr 23, 2007
The largest study to date of genetic variation among chimpanzees has found that the traditional, geography-based sorting of chimps into three populations-western, central and eastern-is underpinned by significant genetic differences, two to three times greater than the variation between the most different human populations.

.
Get Our Free Newsletters Via Email
  



  • Wireless Sensors Limit Earthquake Damage
  • Tsunami Emergency In Solomons Declared Over
  • DigitalGlobe And GeoEye Partner With The USGS In Support Of International Charter
  • Philippine Survivors Left Feeling Forgotten

  • Will Lemmings Fall Off Climate Change Cliff
  • Australian Drought Linked To Global Warming
  • Scientists To Track Impact Of Asian Dust And Pollution On Weather And Climate
  • Security Council Holds Landmark Debate On Climate Change

  • Scientists Meet To Review Envisat Results After Five Years Of Operations
  • US Uses Landsat Satellite Data To Fight Hunger And Poverty
  • NOAA And NASA Restore Climate Sensor To Upcoming NPP Satellite
  • High-Resolution Images Herald New Era In Earth Sciences

  • Gazprom Finalizes Deal To Buy Half Stake In Sakhalin 2
  • Managing Heat Aboard Modern Ships
  • Orangutan Warnings Aimed At Palm Oil Industry Says Malaysia
  • Gas Cartel Looking More Attractive

  • HIV Treatment Goal Elusive
  • Bird Flu Genome Study Shows New Strains As new Infections Spread
  • Ebola Outbreaks Killing Thousands Of Gorillas And Chimpanzees
  • HIV Market To Top 10 Billion Dollars

  • The Origin Of The Brain Lies In A Worm
  • Gene Study Shows Three Distinct Groups Of Chimpanzees
  • Swedish Scientific Breakthrough On Planting Blooming Was Faked
  • New Undersea Vent Suggests Snake-Headed Mythology

  • Coal Burning Having A Devastating Impact On Rural Chinese
  • Chinese Economy Reaching Limits
  • Plastic That Degrades In Seawater A Boon For Cruise Industry
  • Lenovo Tops Eco-Friendly Rating For Computers

  • Egyptian Faithful Crave New Islamic Gadgets
  • Scientist Says Cremation Should Meet A Timely Death
  • Liver Regeneration May Be Simpler Than Previously Thought
  • Rhesus Macaque Genome Helps Illuminate What Makes Us Human

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement