![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers East Lansing MI (SPX) Sep 18, 2018
What if roadkill piled beside the road and never decomposed? What if massive fish kills washed up on beaches and remained for eternity? First off, it would be disgusting. Second, the Earth might run out of the key elements these organisms contain. Thanks to a new study by Michigan State University, scientists now have a better way to investigate decomposing plants' and animals' contributions to the ecosystem. This necrobiome, the collective organisms both big and small that helps plants and animals decay, was first defined in 2013 by Eric Benbow, MSU forensic entomologist and microbial ecologist, who led the study. Together with his collaborators, they established a baseline of organisms that play key roles in carrion decomposition. The paper, published in the current issue of the journal Ecological Monographs, establishes the necrobiome encyclopedia to bridge different aspects of ecological theory and also promote the importance of death in ecosystems. The research also effectively establishes the same framework to examine decaying plant and animal communities while acknowledging their key differences and mechanisms. This detailed study covers the spectrum of decomposition processes, from decaying seaweed to a catastrophe, such as an entire animal herd dying en masse, Benbow said. "Decomposer communities are critical, yet there's no standard framework to conceptualize their complex and dynamic interactions across both plant and animal necromass, which limits our comprehensive understanding of decomposition," he said. "Our findings also have implications for defining and testing paradigms related to nutrient recycling, gene flow, population dynamics and other ecosystem processes at the frontier of ecological research." Discovering how decomposition communities interact with each other and how they drive nutrient and carbon cycling could lead to fundamental shifts in ecosystem science, Benbow added. A recent New York Times article featured an area's transformation when lightning killed 300 reindeer in Norway. The carcasses drew carnivores, birds, maggots and microbes. Jen Pechal, MSU forensic entomologist and microbial ecologist, who was quoted in the article, called the Norwegian site a hyperlocal "decomposition island," which created massive diversity in a short span of time. One change in the area resulted in greater plant diversity. Birds feasting on the carrion dropped feces filled with crowberry seeds. The reindeer remains created the perfect soil for crowberry seedlings - an important food source for many animals in the region - to flourish. Promoting the necrobiome lexicon in the scientific community also can open the door for new areas of research. Take, for example, the two seemingly unrelated concepts of distilling liquor and food security. Distilleries generate mash as a waste product. Rather than seeing a waste byproduct that needs to be disposed, entrepreneurs could view the mash through a lens of new product development. There are insects that thrive on decaying mash, consuming and converting it, and then they can be dried and transformed into animal feed. Or, in many countries outside the U.S., the insects themselves could be processed for human consumption. "Our research and this study establish a common language and conceptual tools that can lead to new product discovery," Benbow said. "We're eliminating organic matter and turning it into a value-added product that can add to the world-food cycle. Understanding the species and the mechanisms, which are essentially recycled, can contribute to establishing food security." Pechal contributed to this study. Scientists from Australian National University, USDA, University of Georgia, University of Idaho, Texas A and M University and Mississippi State University contributed to this research.
![]() ![]() Can you evolve while being robust? Vienna, Austria (SPX) Sep 18, 2018 It is often thought that DNA, together with the genes encoded in it, is the essence of life. But equally important is coordinating when genes are turned on and off. In fact, it is this process, called regulation of gene expression, that defines life by allowing organisms to react to their surroundings rather than being static automatons. As even the smallest organisms like bacteria have many genes, coordinating their expression is done by a dedicated set of proteins, which bind specific sites in t ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |