Subscribe free to our newsletters via your
. Earth Science News .

Subscribe free to our newsletters via your

Through A Glass Darkly

A life told in stained glass. This window (c.1300) in St Mary's Church in the village of Deerhurst, England depicts Saint Catherine of Alexandria. The Roman Emperor Maxentius condemned her to death on the breaking wheel (an instrument of torture), but the wheel broke when she touched it, so she was instead beheaded.
by Leslie Mullen
for Astrobiology Magazine
Moffett Field CA (SPX) Aug 27, 2008
Stained glass windows decorate the world's most beautiful cathedrals, and the jewel-colored panels often depict religious stories. According to ongoing research, life may have its own tales to tell in ancient glass.

Microbes may have lived in volcanic glasses that date back to the Archaean era (3.8 to 2.5 billion years ago). These organisms colonize glass in order to extract energy, "eating" metals such as iron or manganese contained within. As they do so, the chemolithoautrophs in volcanic glass may create etchings that remain long after their bodies decay and disappear.

Volcanic glass forms when hot lava is quickly quenched by cooler waters. A centimeters-thin veneer of glass forms on the outside of pillow lavas, and when they cool further and are buried the glass on the outside fractures.

"It's like making toffee apples," says Nicola McLoughlin, a researcher at the University of Bergen in Norway. " It's brittle, and when the hot glass hits water, it falls to pieces." These fractures may provide a way for microbes to enter the glass and set up shop.

The connection between microbes and volcanic glass was first made by Ingunn Thorseth and Harald Furnes of the University of Bergen, who noticed dimples and depressions on the surface of volcanic breccias from Iceland. The sizes and shapes of the pits were similar to the microbes that they found on the same pieces of glass, so they figured the microbes were somehow dissolving the glass.

But some scientists question whether these marks left in glass are in fact "trace fossils" created by microbes. Water moving through fractures in the glass can ferry microbes inside, but scientists still debate exactly how the organisms survive within the glass, or how they go about dissolving the glass.

Critics suggest that the pits, grooves and tubular channels could be created by processes such as glass fracturing, fluid moving through the glass, or maybe even crystals growing within the glass. In other words, microbes live in glass houses, but they may not build them.

For McLoughlin, there is little doubt that the structures in volcanic glass are created by microbes. "The morphologies are so intricate -- the really well-preserved modern examples show spiral and branched shapes -- that I think we can discount bubbles or crystals moving through glass to make channels," she says. "I've convinced myself these are biological."

In glasses formed recently on the seafloor, the organic remains of microbes can be found plastered on the walls of the tiny glass structures, and there are still traces of DNA. Sequence analysis of this DNA has found bacteria and archea which are 1,000 to 10,000 times more abundant than microbial cells found in the overlying deep sea water.

The glass microorganisms include those which use iron and manganese oxidation pathways to produce energy (basaltic glass is rich in this food source).

By studying the microbes in modern glasses, scientists can compare the structures they may create to those found in more ancient rocks where all physical traces of the organisms are long gone. Similar-shaped granular and tubular textures radiating in from the edges of rims and fractures are preserved in volcanic glass that is millions of years in age.

Even if the structures within the glass are formed by life, how can scientists know if the glass was munched on by ancient or modern microbes? The most ancient glass McLoughlin has studied comes from the Barberton Greenstone belt in South Africa, which dates back to 3.48 billion years ago.

She has also looked at Australian rocks dating back to 3.35 billion years ago. Even though the rocks are old, that doesn't necessarily mean the microbes who dined on them were as well.

McLoughlin says that titanium-bearing minerals in the glass help to preserve the structures, and also can indicate when the microbes were at work. As the glass was altered on the ancient seafloor a mineral called titanite was precipitated out of the glass and filled the tubular channels left by the microbes, preserving the structures.

"It makes a cast, like pouring Plaster of Paris into a footprint," says McLoughlin.

The ancient glass subsequently went through crystallization changes as it was buried under the seafloor, metamorphosed, and eventually turned into chlorite. (Chlorite is green, which is why layers of these metamorphosed glasses are known as Greenstone belts).

If the titanite had not filled in the structures before the glass was altered, they would have transformed into chlorite as well. "So it preserves the textures, and not only that, because it contains minor amounts of radioactive uranium, it can be dated," says McLoughlin.

Radiometric dating of the titanite found in Archean pillow lavas by Neil Banerjee and Antonio Simonetti confirmed that the structures also formed in the Archean era. If microbes made these structures, they had to be nearly as ancient as the once glassy lavas they lived in.

These investigations of structures made by microbial life in volcanic glass have implications for studies of the origins of life on Earth and perhaps beyond.

Traditionally, scientists who look for life in old rocks focus on cherts, which can preserve fine scale details of delicate organisms. Cherts are sedimentary rocks, formed in places like the tidal zone of a sunny beach or on the ancient seafloor -- just the sort of place where it is thought that early life liked to hang out.

However, if fossils can be found in volcanic rock as well, then this vastly increases the number of potential discoveries that could be made of ancient life, especially since in some parts of the world as much as 60 percent of the Archaean rocks are of volcanic origin.

"The idea of hydrothermal vents as the cradle of life has been around for some time, but when considering volcanic lavas most people thought these were too hot and uninhabitable," says McLoughlin. "Traditionally trace fossils have been found in muds and sediments, and so we're now opening up a new field of looking for trace fossils in volcanic environments."

McLoughlin and her colleagues are continuing work on structures found in volcanic glasses, trying to understand where and how they are distributed in the earliest seafloor. They are also trying to refine the dates on some of the earliest examples, and to better understand precisely how they formed. "We are hoping to see more clearly through this glassy window into the early Earth," says McLoughlin.

Email This Article
Comment On This Article

Share This Article With Planet Earth DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook

Related Links
Darwin Today At

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Shipwrecks On Coral Reefs Harbor Unwanted Species
Washington DC (SPX) Aug 26, 2008
Shipwrecks on coral reefs may increase invasion of unwanted species, according to a recent U.S. Geological Survey study. These unwanted species can completely overtake the reef and eliminate all the native coral, dramatically decreasing the diversity of marine organisms on the reef.

  • China quake refugees still facing uncertain future
  • Japanese scientists seek quake secrets in Parthenon design
  • Florida asks for disaster declaration due to Tropical Storm Fay
  • Japan warns of iPod nano fire risk

  • Climate Leaders Call On Washington For Better Climate Change Protection
  • Climate Change Could Be Impetus For Wars, Other Conflicts
  • Drier, Warmer Springs In US Southwest Stem From Human Effect On Winds
  • Bones Beat Trees As Markers For Environmental Change

  • GOCE To Look At The Earth Surface And Core
  • Tropical Storm Fay's Center Now Moving Inland
  • Saharan Dry, Dusty Air Lessened Intensity Of 2007 Hurricane Season
  • Ball Aerospace Begins Final Prep For NPOESS OMPS Instrument

  • Coal-Fired Plant Transforms To Bioenergy Facility
  • Why Wind Turbines Can Mean Death For Bats
  • Greenhunter Biofuels Updates Status Of Biodiesel Refinery Operations
  • Today Butter Sculpture, Tomorrow Sustainable Fuel

  • HIV-positive Swazi women march against royals' shopping binge
  • Matsushita says new DNA technology identifies disease risks
  • Canopus Biopharma Chinese Researcher Team Up To Treat Avian Influenza
  • UN gives aid to Guinea Bissau to fight cholera epidemic

  • Through A Glass Darkly
  • Exploding Chromosomes Fuel Research About Evolution
  • Shipwrecks On Coral Reefs Harbor Unwanted Species
  • Genome Of Simplest Animal Reveals Ancient Lineage

  • Greenland Ice Core Reveals History Of Pollution In The Arctic
  • Even in Europe, 20 million people without toilets: forum
  • Bangladesh bans 'toxic' oil tanker
  • Study Shows Continued Spread Of Dead Zones

  • New Book Supports Theory Of Man The Hunted
  • Oetzi The Iceman Dressed Like A Herdsman
  • Face Recognition: Nurture Not Nature
  • Desperate families snub corrupt police in Mexico kidnap epidemic

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement