Subscribe to our free daily newsletters
. Earth Science News .




Subscribe to our free daily newsletters



EPIDEMICS
Using NASA Satellite Data to Predict Malaria Outbreaks
by Samson Reiny for GSFC News
Greenbelt MD (SPX) Sep 15, 2017


A map showing the rivers the Peruvian Amazon and surrounding areas. Precipitation and other environmental conditions affect river height, which can impact the number of mosquito breeding sites along their banks. Image courtesy NASA's Scientific Visualization Studio.

In the Amazon Rainforest, few animals are as dangerous to humans as mosquitos that transmit malaria. The tropical disease can bring on high fever, headaches and chills and is particularly severe for children and the elderly and can cause complications for pregnant women. In rainforest-covered Peru, the number of malaria cases has spiked. In the past five years, the country has had on average the second highest rate in the South America. In each of the years 2014 and 2015 there were 65,000 reported cases.

Containing malaria outbreaks is challenging because it is difficult to figure out where people are contracting the disease. As a result, resources such as insecticide-treated bed nets and indoor sprays are often deployed to areas where few people are getting infected, allowing the outbreak to grow.

To tackle this problem, university researchers have turned to data from NASA's fleet of Earth-observing satellites, which are able to track the types of human and environmental events that typically precede an outbreak. With funding from NASA's Applied Sciences Program, they are working in partnership with the Peruvian government to develop a system that uses satellite and other data to help forecast outbreaks at the household level months in advance and prevent them from happening.

Tracking Mosquitos
In the Amazon, the Anopheles darlingi mosquito species is most responsible for spreading malaria, which is caused by single-celled parasites called Plasmodia. Females (and only females) ingest the parasite upon feeding on the blood of an infected human and can pass it on to the next human it feeds on.

"Malaria is a vector-borne disease, which means you have to have a vector, or mosquito, in this case, transmit the disease," said principal investigator William Pan, an assistant professor of global environmental health at Duke University. "The key to our malaria forecasting tool lies in pinpointing areas where prime breeding grounds for these mosquitos overlap simultaneously with human populations."

Predicting where these mosquitos will flourish relies on identifying areas with warm air temperatures and calm waters, such as ponds and puddles, which they need for laying eggs. Researchers are turning to the Land Data Assimilation System, or LDAS: a land-surface modeling effort supported by NASA and other organizations. NASA satellites, such as Landsat, Global Precipitation Measurement, and Terra and Aqua, serve as inputs for LDAS, which in turn provides ongoing information on precipitation, temperature, soil moisture and vegetation around the world.

While not identifying puddles and ponds outright, LDAS shows where they are very likely to form. For example, flooding may overflow riverbanks or heavy rains can saturate the soil, allowing water to pool.

"It's an exercise in indirect reasoning," said Ben Zaitchik, the project's co-investigator responsible for the LDAS component and an associate professor at Johns Hopkins University's Department of Earth and Planetary Sciences. "These models let us predict where the soil moisture is going to be in a condition that will allow for breeding sites to form."

Through satellite-derived vegetation and land cover maps, LDAS also tracks another major indicator for future malaria outbreaks: deforestation, in particular when road development is involved. When roads are built, bulldozers dig ditches to dispose of trees and other vegetative waste; when filled with rainwater those ditches become mosquito breeding sites. When infected people traverse these roads and transmit the disease to Anopheles darlingi, an outbreak can occur.

Tracking Humans
While LDAS tracks weather and deforestation to identify emerging mosquito populations and future outbreak hotspots, reported malaria cases place the infected on the map. But for the purposes of predicting an outbreak, that map doesn't tell a complete story.

In Peru, malaria is diagnosed and treated at health posts scattered around the country, and resources are dispatched to those posts to contain outbreaks. The problem with this approach to containment, according to Pan, is that the health post where a person seeks treatment isn't always near where he or she contracted the disease. That's because those who are at greatest risk for malaria spend several months of the year logging or mining, which often sends them on journeys far from their homes.

Finding where people are getting infected forms the crux of the malaria forecast system, and Pan is developing a regional-based statistical model and a more detailed agent-based model to target these hotspots.

For the regional model, reported cases of malaria are incorporated along with population estimates for each county and assumptions about where people are traveling based on seasonal migration studies. Integrating environmental data through LDAS not only places mosquito populations on the map but also helps to inform human movement, for example, by detecting rising rivers during the rainy season.

"It's much easier to float logs down a river when its high, and at the same time mosquitos thrive because pockets of water emerge along the riverbank," Pan explained, "so these types of conditions correspond with high malaria risk."

The regional model will provide a big-picture look at how humans, mosquitoes, and the disease are located and where they're headed based on how those variables interact.

At the same time, the agent-based model-named because it models the behavior of every agent, or every human, mosquito, and malaria parasite within an area-will zoom in on a tighter geographic space by utilizing high-resolution hydrology data and by homing in on neighborhoods and the movement of people. In combination with LDAS data, the model will run a simulation to assess the probability of when, where and how many people are expected to get bitten and infected with the disease.

Preventing an Outbreak
According to Pan, the two models will be used to project forward 12 weeks and pinpoint, down to the household level, where the disease is predicted to take hold. The models will also simulate what would result from any one of several actions, from handing out bed nets and sprays that can reduce human-mosquito contact to administering preventive anti-malaria treatment that can stop transmission. Based on the results, the ministry of health can carry out the optimum plan.

The agent-based model's ability to make projections down to the household level allows for resources to go where they're needed. It would be a marked turn from the government's current method, which is to distribute resources broadly, sometimes to areas that may not need them.

"Instead of treating 100 percent of the community, we could focus vector control in certain households or specific areas of the community," Pan explained. "It's a targeted strategy that can achieve the same reduction in malaria, but at potentially lower cost and with a more rapid response."

As the project enters the third of its three-year grant, Pan and his colleagues continue to refine the models. He estimates the forecasting tool could be ready for use within a few years. The Peruvian government is already working with Pan to familiarize itself with the system, particularly as it begins its Malaria Cero program, which aims to eliminate the disease by 2021. Other countries, including Colombia and Ecuador, have expressed interest.

While this project is focused on malaria, Pan noted that one of the advantages of the tool is its adaptability, as the LDAS and population models can be used for tracking not only malaria but also a number of other diseases, such as Zika and Dengue. "I think that government health agencies will find not just one but many uses for the system that can benefit a lot people," he said. "That's always been our goal."

EPIDEMICS
Tick tock and the risk of tick-borne disease
Santa Barbara CA (SPX) Sep 13, 2017
Around the world, ticks are one of the most important vectors of zoonotic diseases - animal diseases communicable to humans - and they're everywhere. While North Americans worry about Lyme disease carried by blacklegged or deer ticks, on the other side of the globe, people contend with a different variety of tick-borne fevers. A new study by UC Santa Barbara researchers and colleagues sugg ... read more

Related Links
Earth at NASA
Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EPIDEMICS
America asks: How did eight people die in Florida nursing home?

Trump views flooding's aftermath in hurricane-ravaged Florida

France's hurricane-hit St Martin on guard for health threats

Russia plays up role as peacemaker, donor in Syria

EPIDEMICS
New microscopy method for quick and reliable 3-D imaging of curvilinear nanostructures

Chinese video site offers virtual escape from 'boring' reality

Chinese video site offers virtual escape from 'boring' reality

Molecules move faster near sticky surfaces

EPIDEMICS
130-tonne 'monster fatberg' clogs London sewer

Old fish are rare in today's heavily fished oceans

NASA team find evidence of sea level 'fingerprints'

Man-made reefs: A compelling diving alternative

EPIDEMICS
Study shows Arctic sea ice continues to melt considerably

Reindeer grazing protects tundra plant diversity in a warming climate

Warm Antarctic caves harbour secret life: scientists

Ancient tree exposes cause of hike in Arctic temperature

EPIDEMICS
Foodies cheesed off as China says 'non' to France's finest

EU chamber urges China to lift cheese ban

Parched Jordan starts growing vegetables in

Research finds roots use chemical 'photos' to coordinate growth

EPIDEMICS
Niger floods leave at least 54 dead, 200,000 displaced

Norma weakens near Mexican resort, Maria threatens Caribbean

Niger flooding kills 50, displaces over 100,000 since June

Three dead as Typhoon Doksuri lashes central Vietnam

EPIDEMICS
Pro-Biafra supporters clash with Nigerian troops

HRW accuses Mali, Burkina troops of sweeping rights abuses

DRCongo troops chasing reporter 'force entry' at UN base

Angolans vote as Dos Santos ends 38-year rule

EPIDEMICS
Large-scale study of genetic data shows humans still evolving

Groups are more likely to lie than individuals, new study shows

Human settlement in the Americas may have occurred in the late Pleistocene

Humans are still evolving, study suggests




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement