![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Albany CA (SPX) Feb 07, 2017
Nearly a decade after being logged, vegetation in forested areas severely burned by California's Cone Fire in 2002 was relatively similar to areas untouched by logging equipment. The findings of a U.S. Forest Service study shed light on how vegetation responds to severe wildfire and whether further disturbances from logging affect regrowth. The study, "Response of understory vegetation to salvage logging following a high-severity wildfire," reports a modest difference between logged and unlogged areas for some shrubs, but researchers with the agency's Pacific Southwest Research Station conclude the diversity of plant species and their abundance, as a whole, differed little between logged and unlogged sites. Salvage logging refers to the practice of harvesting fire-killed trees ("salvage") to extract economic value from them before the wood decays. The differences observed within the shrub communities could stem from the plants' reproduction cycle and timing of the logging operations. "The three native shrub species that declined in abundance with logging (prostrate ceanothus, snowbrush ceanothus and greenleaf manzanita) have seeds triggered to germinate by heat or char from fire," said Eric Knapp, a research ecologist with the Forest Service and study co-author. Logging occurred more than a year after the fire, which would have coincided with the seedling stage of the new shrubs, making them vulnerable to surface disturbances. "It is possible that the effect on shrubs might have been avoided if logging had been done soon after the fire, prior to seeds germinating," Knapp said.
Additional findings include: + Researchers observed plant species which weren't dependent on fire-stimulated germination to be less affected by post-fire logging. Many of these species emerge from deeply buried roots or bulbs, leading researchers to believe they were better protected from ground disturbances caused by logging machinery. + Researchers did observe, however, substantial changes in the plant community during the course of the six-year study. For example, the amount of weedy non-native plants across all research sites increased, suggesting that the plant community responded more strongly to environmental changes caused by high-intensity wildfire than disturbances from logging. The relatively flat ground and rocky soil of the research sites within the Blacks Mountain Experimental Forest in California's Lassen National Forest, where the Cone Fire burned, may have reduced negative effects associated with ground disturbance, leading researchers to caution applying their findings to areas where soil disturbance from logging is greater. However, the results do coincide with a growing body of evidence from other post-fire logging studies. "Longer-term research is finding that understory vegetation might not be as substantially impacted by post-fire logging as originally feared," said Martin Ritchie, Forest Service research forester and study co-author, "especially when care is taken to minimize soil impacts." Knowing that salvage logging doesn't appear to significantly impact vegetation regrowth could allow researchers and land managers to instead focus attention on other aspects of post-fire logging that could benefit from further research. "If future studies continue to not find strong longer-term salvage harvest effects on forest understory vegetation," Knapp said, "the debates about pros and cons of post-fire management could then narrow to topics such as snag habitat and woody fuel levels that are unequivocally impacted by salvage harvest."
![]() ![]()
Related Links Pacific Southwest Research Station Forest and Wild Fires - News, Science and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |