Subscribe free to our newsletters via your
. Earth Science News .




FLORA AND FAUNA
Water striders' jumping on water - understood and imitated after careful observations
by Staff Writers
Seoul, South Korea (SPX) Aug 07, 2015


Comparison between the robot (A) and its inspiration - the real water strider (B) during jump. The insect and the robot are not at the same scale because the aim is to focus on similarities in the dimples on the water surface created by legs of the robot (A) and the insect (B).. Although the robots themselves do not faithfully imitate the look and morphology of the real water striders, the interactions between the robot legs and the-water surface correctly reproduce the principal mechanism used by jumping insects. Therefore, the robot performance is comparable to that of the real water striders. They are the first robots that are similar to the larger water strider species in terms of body mass and jump physics as well as jumping performance. The two photos are screenshots from the video clips from Koh et al. 2015. Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Image courtesy Koh et al. 2015. For larger version of this image please go here.

Jumping is an antipredatory adaptation of many water strider species to avoid capture by predators that attack from under the water surface. The Korean-Polish team of biologists, Piotr Jablonski, Sang-Im Lee and Jae Hak Son from the Laboratory of Behavioral Ecology and Evolution (Jablonski, Lee and Son) and the Institute of Advanced Machines and Design (Lee) at the Seoul National University have filmed jumping behavior of the largest water strider species in Korea, Aquarius paludum.

Slow-motion movies shot at 1000 fps, showed that the typical jump has two phases. Video of the water strider Aquarius paludum jumping on a solid substrate clearly shows these phases (see the uploaded media "Water strider A paludum jump on solid substrate.wmv"). In the initial phase midlegs mostly press vertically downwards against the water surface.

As a result of these leg movements, the water surface is deflected creating a dimple in the initial phase. The dimple is created gradually because the leg speed downwards increases gradually rather than abruptly. In the second phase the legs move rather horizontally, first mostly backwards and then mostly inward with a gradual switch between them.

The dimple then moves across the water surface as the legs move backwards and then inward (see the uploaded media "Water strider A paludum jumps on water.wmv" ) during 20-30 milliseconds between the initial phase and the moment when the legs leave the water surface.

Theoretical Understanding
Based on the insect morphology and the pattern of the leg movements, the team of theoretical engineers, Ho-Young Kim and Eun-Jin Yang from the Micro Fluid Mechanics Laboratory and the Institute of Advanced Machines and Design at the Seoul National University, created a mathematical model of surface tension forces that make the vertical jump possible (a type of model called "kinematic model"). They estimated a threshold value for the dimple depth below which the legs will break the water surface.

Then, they calculated the vertical body speed of a jumping insect resulting from the interactions between legs and water surface. At the heart of these calculations is the fact that each leg of an insect creates a dimple on the water surface (provided it does not break the surface), and that at each moment of time the water strider experiences the upward directed force (component of the surface tension force) from each dimple.

The final jumping speed is proportional to the sum of forces acting on all four legs (four dimples) at each moment of time for the duration of jump. This means that the adding of the forces occurs in space (four dimples) and time (along the duration of jump).

The upward force at each dimple increases as the dimple depth (strictly speaking volume) increases. But, breaking of the water surface by legs, which occurs after the threshold depth is reached, leads to a loss of the dimple and the upward force.

Therefore, the model predicted that the speed-maximizing jumping behavior is to keep the dimple as deep as possible for as long as possible without breaking the surface of water. The theoretical analysis suggested that the water strider's leg movement pattern observed by biologists allows insects to achieve this optimal jumping performance without breaking the water surface

Building Jumping Robots
Inspired by the biological observations and the theoretical understanding, the team of engineers, Kyu-Jin Cho, Je-Sung Koh, Gwang-Pil Jang, and Sun-Pill Jung from the Biorobotics Laboratory and the Institute of Advanced Machines and Design at the Seoul National University, together with Robert J. Wood from the School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering at Harvard University, began to design miniature robots.

They created a computer model of jumping (a type of model called "dynamic model") helpful in designing a robot that correctly reproduces the physical principle used by water striders in jumping. The new robots correctly imitate the core characteristic of the insect leg movements: initial gradual increase of downward force against the water surface, which creates the water dimple without splashing and without breaking of the water surface, followed by inward movements of the legs on the surface, which causes a shift of the unbroken dimple across the water surface.

Although the robots themselves do not faithfully imitate the look and morphology of the real water striders, the interactions between the robots' legs and the-water surface correctly reproduce the principal mechanism used by jumping insects. Therefore, the robots' performance is comparable to that of the real water striders. They are the first robots that are similar to the larger water strider species in terms of body mass and jump's physics as well as jumping performance.

The earlier "water strider robots" that jumped on water did not relay on surface tension, created splashes breaking the water surface, and were much larger than the real water striders. None of them was based on as careful observations and understanding of nature as are the robots created by Kyu-Jin Cho, Je-Sung Koh, Gwang-Pil Jang, Sun-Pill Jung and Robert Wood.

These robots open exciting new possibilities to test hypotheses about evolution as an optimizing process that creates biological adaptations to jump. For example, in the future one can probably be able to build mini robots that are very similar to the existing water strider species (for example in terms of leg length) and compare them to the robots that are unlike the existing water strider species. If evolution creates morphologies for the best performance then the robots most similar to the real water striders will show the best jumping performance.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Laboratory Of Behavioral Ecology And Evolution At Seoul National University
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





FLORA AND FAUNA
UN adopts resolution to fight wildlife poaching
United Nations, United States (AFP) July 30, 2015
The United Nations called on its member states Thursday to work harder in combatting poaching of endangered species such as elephants and rhinoceroses. The General Assembly resolution was the first of its kind but not legally binding. Still, it reflects worldwide opposition to illegal hunting. The assembly expressed concern over what it called a steady rise in the level of rhino poaching ... read more


FLORA AND FAUNA
Philippines Haiyan rebuilding 'inadequate', says UN

Cheers as UN irons out roadmap to end poverty

Philippines vows action on Haiyan rebuilding after UN criticism

Fukushima operator says 20 tons of rubble lifted from destroyed reactor

FLORA AND FAUNA
Photoaging could reverse negative impact of ultraviolet radiation

GOES-S sensor gets clean bill of health from hospital

NYU scientists bring order, and color, to microparticles

Twin discoveries, 'eerie' effect may lead to manufacturing advances

FLORA AND FAUNA
Greenhouse gases' millennia-long ocean legacy

Fiji military boss says sudden resignation no sign of instability

Ocean changes are affecting salmon biodiversity and survival

Veolia says net profits more than double to 321 million euros

FLORA AND FAUNA
Study calculates the speed of ice formation

Glaciers melt faster than ever

Arctic's Soviet-era ghost town seeing revival

Tracking the retreat of Arctic ice

FLORA AND FAUNA
How bees naturally vaccinate their babies

Food tech startups raking in cash: survey

Colombia to buy land for poor in post-war period

LED sole-source lighting effective in bedding plant seedling production

FLORA AND FAUNA
Hundreds dead, millions displaced as monsoon rains heap misery on Asia

Myanmar rescuers race to flood zones as toll mounts

Connecting people and geology on volcanoes

Study offers new insights on hurricane intensity, pollution transport

FLORA AND FAUNA
US envoy says 'patience has run out' over South Sudan

Burkina Faso on a tightrope ahead of key polls

Nigerian army frees dozens of women, children from Boko Haram

South Sudan mediators propose war crimes court

FLORA AND FAUNA
Body size increase did not play a role in the origins of Homo genus

Take a trip through the brain

An all-natural sunscreen derived from algae

It don't mean a thing if the brain ain't got that swing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.