![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Dec 27, 2017
NASA scientists conducting research on the connection between fuel moisture and fires have uncovered a paradox: a wet winter corresponds to more small wildfires in the following fire season, not fewer, as is commonly assumed. Large fires behave more "logically," with fewer large fires after a wet winter and more after a dry one. "This is the most surprising result from our study, because we would expect small fires to follow suit with larger fires," said Daniel Jensen, a Ph.D. candidate at UCLA who worked on the project under the direction of scientist J.T. Reager of NASA's Jet Propulsion Laboratory in Pasadena, California. When there is ample moisture for plant growth, Jensen pointed out, "It seems that the buildup of fuel content alone causes there to be more fires - but not necessarily more devastating fires." The research is a step toward understanding the role of fuel moisture in wildfires, which could help in determining how severe a fire season may be several months before it arrives. A paper on the research is online in the journal Environmental Research Letters. As anyone who has ever lit a campfire knows, dry fuel catches fire and burns faster than damp fuel. Knowing the moisture of a fuel supply can improve predictions of how fast a wildfire may spread, but measuring it from samples collected in the field is time-consuming and labor-intensive. Remote sensing offers a possible alternative, and earlier studies have shown that soil moisture (the water contained in the soil) correlates well with fuel moisture. Jensen and co-authors correlated records of wildfire occurrences across the contiguous United States from 2003 through 2012 with soil moisture measurements from the U.S./German Gravity Recovery and Climate Experiment (GRACE) satellite mission and U.S. Geological Survey data on vegetation and landscape types. They found that although each landscape type varied in average soil moisture and average number of fires, in every landscape type, the number of small fires increased after a wet pre-season. Jensen explained that a wet winter causes grasses and other small plants to grow profusely. These plants dry out and die at the end of the growing season, leaving abundant fuel for a wildfire. Trees and larger shrubs, however, retain more moisture after a wet winter. That might hamper the ability of small fires to grow into large ones in landscapes containing trees. To obtain their results, the researchers developed techniques to assimilate GRACE data into a high-resolution U.S. hydrology model called the Catchment Land Surface Model, from NASA's Goddard Space Flight Center in Greenbelt, Maryland, for a product with both accuracy and high resolution. They parceled each GRACE estimate, which covers a region about 186 miles (300 kilometers) square, into dozens of smaller "boxes" to match the resolution of the model, using data assimilation techniques to refine the "fit" until the results added up correctly to match the GRACE data. Data assimilation, a technique commonly used with weather forecasting models, adds ongoing observational data throughout the course of a simulation to keep a model on track. The scientists chose GRACE because of the mission's longevity, said Reager. Other missions such as NASA's Soil Moisture Active Passive (SMAP) satellite offer higher resolution, but none has been in orbit as long as GRACE. "Without that long record, we wouldn't have been able to do the model fitting," Reager said. "Now that we've built the model, we can plug in SMAP data. This methodology will help us get a better look at the ecosystem dynamics of fire activity."
![]() Los Angeles (AFP) Dec 21, 2017 Firefighters in California on Wednesday said the massive Thomas wildfire - about the size of sprawling Los Angeles - was about 60 percent contained but they warned strong winds were still forecast. Firefighters took advantage of weaker winds on Monday and Tuesday to battle the voracious blaze, which has already destroyed more than 1,300 structures. After the brief respite heavy winds a ... read more Related Links GRACE-Follow-On Forest and Wild Fires - News, Science and Technology
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |