![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Sapporo, Japan (SPX) Apr 20, 2017
In the microgravity experiments at the International Space Station (ISS), scientists revealed that supercooled water containing antifreeze glycoproteins accelerates and oscillates its ice crystal growth rate. This seemingly contradictory result may lead to a better understanding of the mysterious antifreeze effect in living organisms. Fish can survive even in subzero environments, such as under ice floes. Researchers have hypothesized that when glycoproteins contained in fish blood are absorbed on the surface of ice crystals, it curbs the growth of ice crystals. Verifying the functions of these glycoproteins requires precise measurements of the normal growth rates of crystals over time. Yet this is difficult to do so on the Earth because of the natural convective flow around the growing crystal induced by gravity. The researchers, led by Hokkaido University Professor Emeritus Yoshinori Furukawa, hoped to use the microgravity conditions of space to accurately measure the normal growth rates of crystal faces, as convective flow does not occur in this environment. To carry out the experiments on the ISS, Hokkaido University's Institute of Low Temperature Science and JAXA jointly developed Ice Crystal Cell 2, a device for measuring the speed of ice crystal growth in space. Once installed in the Japanese experiment module KIBO, experiments were carried out by controlling the device using signals from the ground. The researchers conducted 124 experiments of which 22 were deemed to have accurately measured ice crystal growth rates in supercooled water containing a glycoprotein impurity. The results showed that the bottom basal faces of the ice crystals grew three to five times faster than in pure water. Ice crystals also exhibited periodic oscillations as they grew. "The results were contrary to what was expected, as the glycoprotein actually facilitated the growth of ice crystals, rather than curbing it," says Ken Nagashima of the research team. What, then, explains glycoprotein's antifreeze effect? The researchers discovered the tricky process in which flat crystal faces with high growth rates were truncated by faces with slower growth rates, causing the polyhedral crystal to be surrounded by only flat faces with the lowest growth rates. This resulted in greatly slowing down the growth of the ice crystals. "Our results suggest that the prevention of freezing in living organisms cannot be solely explained by the growth depression effect of glycoproteins. In other words, the novel mechanism we observed is essential for preventing living organisms from freezing," says Nagashima. "The function of glycoproteins in ice crystal growth is closely connected to how biopolymers regulate the growth of various inorganic crystals. A better understanding of this may lead to the creation of novel materials", he added.
![]() Wurzburg, Germany (SPX) Apr 20, 2017 The African Matabele ants (Megaponera analis) are widespread south of the Sahara and are a specialised termite predator. Two to four times a day, the ants set out to hunt prey. Proceeding in long files, they raid termites at their foraging sites, killing many workers and hauling the prey back to their nest. These attacks, however, are met with resistance and the ants get involved in fights ... read more Related Links Hokkaido University Darwin Today At TerraDaily.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |