![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
The IMPRESS project saw the first launch of an experimental payload, the Electromagnetic Levitator, onboard an ESA/DLR-funded Texus 42 sounding rocket, from the Esrange launch site near Kiruna in northern Sweden, on 1 December at 10:06 hours CET. This experimental payload, jointly developed by ESA and the DLR, enables accurate measurement of the properties of highly-reactive liquid metal alloys. Such measurements are unattainable on Earth and will greatly benefit the project. Intermetallic Materials Processing in Relation to Earth and Space Solidification (IMPRESS) is a multi-million euro materials science project co-funded by ESA and the European Commission. The project, which currently involves 150 materials scientists from across Europe and Russia, aims to develop new intermetallic alloys for industrial applications such as gas turbine blades and hydrogen fuel cells. During the 6 minutes and 37 seconds of weightless conditions provided by the sounding rocket, the Levitator performed as planned. During the flight, scientific and housekeeping data as well as video images of the sample were received in real-time and closely monitored by engineers and scientists at the Esrange ground station. Although more time will be needed for a full analysis of the scientific data, the initial prognosis is very promising. "This launch is a major step forward in zero-g experimentation for the IMPRESS project", said David Jarvis, ESA Project Manager. "The next generation of intermetallics developed under IMPRESS has the potential to make Europe a world leader in the strategically-important area of materials science. The economic significance of this should not be underestimated, as turbine production and fuel-cell development is currently a multi-billion euro industry, the growth of which is set to continue." The coming weeks will be busy ones for the science team, led by Dr Rainer Wunderlich and Prof. Hans-Jorg Fecht from the University of Ulm, Germany, as it pores over the thermophysical properties data obtained during the flight. Eventually, that data will be used under the IMPRESS project to improve computer modelling of advanced solidification processes. This research is of major importance to the casting industry in Europe and will ultimately lead to the next generation of materials for aircraft jet engines. "The success of this mission is thanks to the careful preparation by the IMPRESS science team, the industrial development team led by EADS-Space Transportation, Bremen and Friedrichshafen in Germany and the operational support team at the DLR Microgravity User Support Centre in Cologne and at Esrange" said Wolfgang Herfs, ESA's Sounding Rocket Project Manager. With further sounding-rocket flights planned, the IMPRESS project will also be making extensive use of European facilities onboard the International Space Station - including the Electromagnetic Levitator - to perform benchmark experiments on intermetallic alloys. Related Links TerraDaily Search TerraDaily Subscribe To TerraDaily Express ![]() ![]() In work that could radically change how engineers search for new materials, MIT researchers have developed a way to test the mechanical properties of almost 600 different materials in a matter of days - a task that would have taken weeks using conventional techniques.
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |