Subscribe free to our newsletters via your
. Earth Science News .




CHIP TECH
2D Transistors Promise a Faster Electronics Future
by Lynn Yarris Berkeley News
Berkeley CA (SPX) Jun 10, 2014


Berkeley Lab researchers fabricated the first fully 2D field-effect transistor from layers of molybdenum disulfide, hexagonal boron nitride and graphene held together by van der Waals bonding.

Faster electronic device architectures are in the offing with the unveiling of the world's first fully two-dimensional field-effect transistor (FET) by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab). Unlike conventional FETs made from silicon, these 2D FETs suffer no performance drop-off under high voltages and provide high electron mobility, even when scaled to a monolayer in thickness.

Ali Javey, a faculty scientist in Berkeley Lab's Materials Sciences Division and a UC Berkeley professor of electrical engineering and computer science, led this research in which 2D heterostructures were fabricated from layers of a transition metal dichalcogenide, hexagonal boron nitride and graphene stacked via van der Waals interactions.

"Our work represents an important stepping stone towards the realization of a new class of electronic devices in which interfaces based on van der Waals interactions rather than covalent bonding provide an unprecedented degree of control in material engineering and device exploration," Javey says. "The results demonstrate the promise of using an all-layered material system for future electronic applications."

FETs, so-called because an electrical signal sent through one electrode creates an electrical current throughout the device, are one of the pillars of the electronics industry, ubiquitous to computers, cell phones, tablets, pads and virtually every other widely used electronic device.

All FETs are comprised of gate, source and drain electrodes connected by a channel through which a charge-carrier - either electrons or holes - flow. Mismatches between the crystal structure and atomic lattices of these individual components result in rough surfaces - often with dangling chemical bonds - that degrade charge-carrier mobility, especially at high electrical fields.

"In constructing our 2D FETs so that each component is made from layered materials with van der Waals interfaces, we provide a unique device structure in which the thickness of each component is well-defined without any surface roughness, not even at the atomic level," Javey says.

"The van der Waals bonding of the interfaces and the use of a multi-step transfer process present a platform for making complex devices based on crystalline layers without the constraints of lattice parameters that often limit the growth and performance of conventional heterojunction materials."

Javey and his team fabricated their 2D FETs using the transition metal dichalcogenide molybdenum disulfide as the electron-carrying channel, hexagonal boron nitride as the gate insulator, and graphene as the source, drain and gate electrodes. All of these constituent materials are single crystals held together by van der Waals bonding.

For the 2D FETs produced in this study, mechanical exfoliation was used to create the layered components. In the future, Javey and his team will look into growing these heterogeneous layers directly on a substrate. They will also look to scale down the thickness of individual components to a monolayer and the lengths of the channels to molecular-scale dimensions.

Javey is the corresponding author of a paper describing this research in ACS Nano titled "Field-Effect Transistors Built from All Two-Dimensional Material Components". Co-authors are Tania Roy, Mahmut Tosun, Jeong Seuk Kang, Angada Sachid, Sujay Desai, Mark Hettick and Chenming Hu.

.


Related Links
Berkeley Lab
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
EMCORE Introduces Internal Fiber Delay Line System for the Optiva Platform
Albuquerque NM (SPX) May 27, 2014
EMCORE has announced the introduction of the Optiva OTS-ODLS 18, 22 and 40 GHz Internal Fiber Delay Line Systems for delay times up to 40 microseconds. EMCORE's fiber optic delay lines provide bandwidth that is essentially independent of fiber length, losses or delays, and triple transit signals that are immeasurable. They are ideal for applications such as radar system testing, phased arr ... read more


CHIP TECH
Engility wins follow-on USAID training deal

MH370 China relatives meet wall of silence from airline

MH370 families raise funds to find 'whistleblower'

The 'Sherlock Holmes' of Himalayan mountaineering

CHIP TECH
Raytheon selected to demonstrate next generation, modular radar system

Shatterproof screens that save smartphones

Analyzing Resistance to Impacts and Improving Armor Plating

Boeing Completes 2nd 702HP Satellite for the Government of Mexico

CHIP TECH
New England lakes recovering rapidly from acid rain

Chile rejects huge hydroelectric project in Patagonia

Experts want urgent action on rare N.Zealand 'hobbit' dolphin

Geologists Confirm Oxygen Levels of Ancient Oceans

CHIP TECH
Researchers find major West Antarctic glacier melting from geothermal sources

New permafrost is forming around shrinking Arctic lakes

Great Lakes finally free of ice

Solving the puzzle of ice age climates

CHIP TECH
How much fertilizer is too much for the climate?

Common bean genome sequence provides powerful tools to improve critical food crop

Retracing early cultivation steps: Lessons from comparing citrus genomes

Report supports shutdown of all high seas fisheries

CHIP TECH
Flooding in Paraguay sends thousands fleeing to shelters

Hurricane Cristina forms off coast of Mexico: US

$210 million needed now for Bosnia floods: UN

India searches for students washed away in river surge

CHIP TECH
US law has helped limit 'conflict minerals': study

Georgia sends troops to Central Africa

Suicide bomber kills four Chadian UN peacekeepers in Mali

Six arrested in Cameroon over Chinese worker abductions

CHIP TECH
New paper amplifies hypothesis on human language's deep origins

Did violence shape our faces?

Human face built to take punches

Looking for the best strategy? Ask a chimp




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.