. Earth Science News .
NANO TECH
2D gold quantum dots are atomically tunable with nanotubes
by Staff Writers
Houghton, MI (SPX) Apr 17, 2019

Two-dimensional (2D) semiconductors are promising for quantum computing and future electronics. Now, researchers can convert metallic gold into semiconductor and customize the material atom-by-atom on boron nitride nanotubes.

Two-dimensional (2D) semiconductors are promising for quantum computing and future electronics. Now, researchers can convert metallic gold into semiconductor and customize the material atom-by-atom on boron nitride nanotubes.

Gold is a conductive material already widely used as interconnects in electronic devices. As electronics have gotten smaller and more powerful, the semiconducting materials involved have also shrunk. However, computers have gotten about as small as they can with existing designs - to break the barrier, researchers dive into the physics underlying quantum computing and the unusual behaviors of gold in quantum mechanics.

Researchers can convert gold into semiconducting quantum dots made of a single layer of atoms. Their energy gap, or bandgap, is formed by the quantum confinement - a quantum effect when materials behave like atoms as their sizes get so small approaching the molecular scale. These 2D gold quantum dots can be used for electronics with a bandgap that is tunable atom-by-atom.

Making the dots with monolayer of atoms is tricky and the bigger challenge is customizing their properties. When laid out on boron nitride nanotubes, researchers from Michigan Technological University have found that they can get gold quantum dots to do the near-impossible. The mechanisms behind getting gold dots to clump atom-by-atom is the focus of their new paper, recently published in ACS Nano.

Yoke Khin Yap, professor of physics at Michigan Tech, led the study. He explains that the behavior his team observed - atomic-level manipulation of gold quantum dots - can be seen with a scanning transmission electron microscope (STEM).

The STEM's high-powered beam of electrons enables researchers like Yap to watch atomic movement in real-time and the view reveals how gold atoms interact with the surface of boron nitride nanotubes. Basically, the gold atoms glide along the surface of the nanotubes and, they stabilize in a hover just above the hexagon honeycomb of the boron nitride nanotubes.

The atomic skiing and stopping is related to the so-called energy selective deposition. In the lab, the team takes an array of boron nitride nanotubes and runs a gold-laden mist past it; the gold atoms in the mist either stick as multilayered nanoparticles or bounce off the nanotube, but some of the more energetic ones glide along the circumference of the nanotube and stabilize, then start to clump into monolayers of gold quantum dots. The team shows that gold preferentially deposits behind other gold particles that have stabilized.

"The surface of boron nitride nanotubes are atomically smooth, there are no defects on the surface, it's a neatly arranged honeycomb," Yap said, adding that the nanotubes are chemically inert and there is no physical bond between the nanotubes and gold atoms.

"It's much like skiing: You can't ski on a bumpy and sticky hill with no snow, ideal conditions make it much better. The smooth surface of the nanotubes is like fresh powder."

The search for new materials for future electronics and quantum computing has led researchers down many paths. Yap hopes that by demonstrating the effectiveness of gold, other researchers will be inspired to pay attention to other metal monolayers at the molecular-scale.

"This is a dream nanotechnology," Yap said. "It is a molecular-scale technology tunable by atom with an ideal bandgap in the visible light spectra. There is a lot of promise in electronic and optical devices."

The team's next steps include further characterization and incorporating device fabrication to demonstrate all-metal electronics. Potentially, monolayers of metal atoms could make up the entirety of future electronics, which will save a lot of manufacturing energy and materials.

Research paper


Related Links
Michigan Technological University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Harnessing microorganisms for smart microsystems
Toyohashi, Japan (SPX) Apr 16, 2019
A research team at the Department of Mechanical Engineering at Toyohashi University of Technology has developed a method to construct a biohybrid system that incorporates Vorticella microorganisms. The method allows movable structures to be formed in a microchannel and combined with Vorticella. In addition, the biohybrid system demonstrates the conversion of motion from linear motion to rotation. The results of their research was published in the IEEE/ASME Journal of Microelectromechanical Systems ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Nuclear fuel removed from crippled Japan plant

Japan slams WTO ruling on S. Korea Fukushima food row

Pentagon awards $976M on two contracts for border wall

Earth's recovery from mass extinction could take millions of years

NANO TECH
It's a one-way street for sound waves in this new technology

Spin lasers facilitate rapid data transfer

Indian Satellite's Pieces Unlikely to Collide With ISS - Russian Space Agency

Ridding space of old satellites and debris

NANO TECH
Water that never freezes

Historic water levels at Iraq reservoirs and dams: officials

Scientists prevent supercooled water from freezing

NASA Sees El Nino Conditions Prevail in the Central Pacific Ocean

NANO TECH
The oldest ice on Earth may be able to solve the puzzle of the planet's climate history

NASA Begins Final Year of Airborne Polar Ice Mission

Woolly mammoths, Neanderthals had similar genetic traits

Melting glaciers causing sea levels to rise at ever greater rates

NANO TECH
Genome assembly of pasta wheat leads to new insights for modern wheat breeding

Farming for natural profits in China

New pathways for sustainable agriculture

Genetic breakthrough on tropical grass could help develop climate-friendly cattle farms

NANO TECH
Iranians band together to battle devastating floods

After cyclone ruin, back to square one for Mozambique's Beira

Scientists discover causes of deadliest volcanic hazards

Brazil flooding unleashes caimans in Rio neighborhood

NANO TECH
Sudan army ousts Bashir, protestors vow further demos

Sudan army ranks seem to be tilting towards protestors: analysts

30 jihadists 'killed or captured' in French-Malian raids near Burkina

Defiant Sudan protesters seek army talks

NANO TECH
Heads in the cloud: Scientists predict internet of thoughts 'within decades'

New branches of the Denisovan family tree discovered in Indonesia

Indigenous groups warn of 'apocalypse' with Brazil's Bolsonaro

New species of early human found in cave in the Philippines









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.