. Earth Science News .
NANO TECH
AFM Positioning: Shining Light On A Needle In A Haystack

The atomic force microscope (AFM) has become one of the standard tools of nanotechnology.
by Staff Writers
Washington DC (SPX) Nov 12, 2010
The researchers characterize their new technique as a neat solution to the "needle in a haystack" problem of nanoscale microscopy, but it's more like the difference between finding the coffee table in a darkened room either by walking around until you fall over it, or using a flashlight.

In a new paper, a group from JILA-a joint venture of the National Institute of Standards and Technology (NIST) and the University of Colorado-finds tiny assemblies of biomolecules for subsequent detailed imaging by combining precision laser optics with atomic force microscopy.

The atomic force microscope (AFM) has become one of the standard tools of nanotechnology. The concept is deceptively simple. A needle-not unlike an old-fashioned phonograph stylus, but much smaller with a tip at most only a couple of atoms wide-moves across the surface of the specimen.

A laser measures tiny deflections of the tip as it is pushed or pulled by atomic scale forces, such as electrostatic forces or chemical attraction. Scanning the tip back and forth across the sample yields a three-dimensional image of the surface. The resolution can be astonishing-in some cases showing individual atoms, a resolution a thousand times smaller than the best optical microscopes can achieve.

Such amazing sensitivity incurs a technical problem: if your probe can image an object of, say, 100 square nanometers, how exactly do you find that object if it could be nearly anywhere on a microscope stage a million times that size?

That's not an unusual case in biological applications. The brute-force answer is, you scan the probe back and forth, probably at a higher speed, until it runs into something interesting. Like the coffee table in the dark, this has problems.

The AFM tip is not only very delicate and easy to damage, but it can be degraded by picking up unwanted atoms or molecules from the surface.

Also, in the biosciences, where the AFM is becoming increasingly important, research specimens usually are "soft" things like proteins or membranes that can be damaged by an uncontrolled collision with the tip.

One solution has been to "label" the target molecule with a small fluorescent compound or quantum dot, so that it lights up and is easy to find, but that means chemically altering the subject, which may not be desirable.

Instead, the JILA team opted to use a flashlight. Building upon an earlier innovation for stabilizing the position of an AFM tip, the group uses a tightly focused, low-power laser beam to optically scan the area, identifying target locations by minute changes in the scattered light. This laser is scanned across the sample to form an image, analogous to forming an AFM image.

The same laser-and detection technique-is used to locate the AFM tip. Hence, the laser serves as a common frame of reference and it's relatively straightforward to align the optical and the AFM image.

In experiments with patches of cell membrane from single-cell organisms, the group has demonstrated that they can locate these protein complexes and align the AFM tip with a precision of about 40 nanometers. Relying solely on scattered light, their technique requires no prior chemical labeling or modification of the target molecules.

"You solve a couple of problems," says NIST physicist Thomas Perkins. "You solve the problem of finding the object you want to study, which is sort of a needle in a haystack problem. You solve the problem of not contaminating your tip. And, you solve the problem of not crashing your tip into what you were looking for.

This prevents damaging your tip and, for soft biological targets, not damaging your sample." And, he says, it's much more efficient. "From a practical perspective, instead of my grad student starting to do real science at 4 p.m., she can start doing science at 10 a.m."

A.B. Churnside, G.M. King and T.T. Perkins. Label-free optical imaging of membrane patches for atomic force microscopy. Optics Express. Vol. 18, No. 23. Nov. 8, 2010.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
National Institute of Standards and Technology (NIST)
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NANO TECH
Israel's scientists think big with the very, very small
Tel Aviv (AFP) Nov 9, 2010
A material just one atom thick that is stronger than steel but flexes like rubber. A "mini-submarine" that can trick the immune system and deliver a payload of chemotherapy deep inside a tumour. They sound like the fantasies of science fiction writers, but they are among the discoveries being presented at Nano Israel 2010, a nanotech conference in Tel Aviv that has attracted researchers from ... read more







NANO TECH
WFP needs to urgently feed 50,000 of Benin flood victims

Pakistan taxes own citizens to raise money for flood relief

Natural disasters in Africa hamper millennium goals

Storm deaths, cholera heap more misery on Haiti

NANO TECH
Original Apple 1 computer to be auctioned

All Systems Nominal Aboard LM BSAT-3b Satellite

EOS Welcomes Australian-US Partnership To Track Space Junk

NIST Pings Key Material In Sonar, Closes Gap On Structural Mystery

NANO TECH
Pacific nations look to increase control over tuna fisheries

Environmentalists urge action at tuna talks

Fish stocks dwindle as trawlers empty Asia's seas

Modeling Glacier Fed Water Dependency

NANO TECH
Russian Drifting Polar Station SP-38 Opens In Chukchi Sea

Increased Arctic Shipping Could Accelerate Climate Change

Is The Ice At The South Pole Melting

End Of Ice Age Holds Clues About Carbon Dioxide Patterns

NANO TECH
Scientists Launch Global Scheme To Boost Rice Yields While Reducing Damage To Environment

Robust Methods For GMO Detection Ready At Hand

Invasive grass threatens U.S. grazing land

Turtle meat killed six in Micronesia, government says

NANO TECH
Indonesia volcano still shooting ash

Death toll from Thai floods tops 200

S.Lanka floods force up to 300,000 from their homes

Indonesian volcano death toll jumps to 191

NANO TECH
Iran FM holds talks in Nigeria after illegal arms shipment

Armies of Sudan north, south do not want war: ministers

China provides Togo 12 million dollars in loans, grants

S.Leone orders British mining company to halt operations

NANO TECH
The Brains Of Neanderthals And Modern Humans Developed Differently

Talking numbers with children helps math

Differences In Human And Neanderthal Brains Set In Just After Birth

Brain Trumps Hand In Stone Age Tool Study


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement