. Earth Science News .
A "Spin-Voltaic" Effect May Enable Silicon Spintronics

file image
by Staff Writers
Buffalo NY (SPX) Oct 26, 2006
Can conventional semiconductors learn new tricks? Igor Zutic is betting that they can. Zutic, a University at Buffalo theoretical physicist and the recipient of a prestigious National Science Foundation CAREER Award, is finding ways to introduce spintronic properties and a phenomenon called spin injection into silicon.

"For information processing and advanced logic operations, it would be particularly desirable to integrate seamlessly magnetic materials with silicon," said Zutic, Ph.D., assistant professor of physics in the UB College of Arts and Sciences. "Rather than displace all that we've learned about silicon through the decades, my work tries to build on it."

Zutic's proposal for spin injection and detection in silicon was published in July in Physical Review Letters with collaborators Jaroslav Fabian of the University of Regensburg and Steven Erwin at the Naval Research Laboratory.

Now, the October issue of Nature Materials is publishing Zutic's "News and Views" article on related experimental efforts to grow junctions of ferromagnetic metals and silicon.

Modern information technology uses the charge of electrons to process information and the spin of electrons to store data.

While charge-based electronics is centered around semiconductor silicon chips, magnetic data storage (as in computer hard drives) relies on magnetic metals. The two spin directions, "up" or "down," provide a way to encode ones and zeroes for storing data, Zutic explained.

Research efforts that attempt to combine these two technologies, called spin electronics or spintronics, promise low power/high speed computers, which could be turned on instantly and require no boot-up time.

In addition to being abundant and inexpensive, Zutic explained, silicon also has very favorable spin properties, which could enable improved performance in proposed spin transistors.

But in contrast to extensive studies with several conventional semiconductors, such as gallium arsenide and indium arsenide, which can be made magnetic by adding magnetic impurities or by growing them next to standard ferromagnets, no such advances have yet been realized with silicon.

Currently, even basic spintronic elements, such as reliable spin injection -- ensuring that electrons injected into silicon maintain their spin -- and spin detection have yet to be demonstrated in silicon.

The difficulty is that silicon has an indirect band gap, Zutic said, which means that silicon cannot emit light efficiently.

"Circularly polarized light is the smoking gun that confirms the presence of injected spin," he said. "That means, unfortunately, that neat tricks of injecting or detecting spin optically, often used at UB, are not directly applicable to silicon."

Zutic published an extensive discussion of these challenges in a paper in Reviews of Modern Physics in 2004 that since has received more than 500 citations.

It may now be possible to overcome this hurdle, he said, with a phenomenon he has named the spin-voltaic effect, a spin analog of the photovoltaic effect used in solar cells to convert light into electric energy.

"In the spin-voltaic effect, an injected spin produces an electrical signal due to its proximity with a magnetic region," he said, "a signal that could be measurable even in an indirect band gap material like silicon. Reversing the direction of injected spin could lead to switching the direction of electrical current, which can flow even if no electrical voltage has been applied.

"The spin-voltaic effect also can play an important role in providing dynamically tunable current amplification in a novel class of spin transistors, a building block for future spin-logic applications," he said.

Recent work by Zutic's collaborators at the Tokyo Institute of Technology has demonstrated for the first time the spin-voltaic effect in direct band-gap semiconductors.

During a visit to Japan in August, Zutic continued his collaboration with this group on efforts to detect this effect in silicon. Scientists at the University of Tohoku in Sendai in Japan are planning to conduct similar experiments.

Zutic's CAREER Award has been supporting his work since his first year at UB. Such awards support the early career-development activities of teacher-scholars "who are most likely to become the academic leaders of the 21st century," according to the NSF.

The U.S. Office of Naval Research also funds his work.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Related Links
University at Buffalo
The latest in computer chip technology

First Hybrid Silicon Laser Developed
Santa Barbara CA (UPI) Sep 20, 2006
U.S. scientists say they have built the world's first electrically powered Hybrid Silicon Laser using standard silicon manufacturing processes. The researchers from the University of California-Santa Barbara and Intel Corporation say the breakthrough addresses one of the last major barriers to producing low-cost, high-bandwidth silicon photonics devices for use inside and around future computers and data centers.







  • LockMart To Create Incident Management Analysis System For The US Dept Of Interior
  • Intelligent Sensors Gear Up For Real-Time Flood Monitoring
  • China Ready For Refugee Rush After North Korean Nuclear Test
  • FEMA Signing Statement Blasted

  • Swiss Bank Targets Top Companies' Impact On Climate Change
  • Geologists Make Better Estimates of Rock Ages, Study Global Climate Change
  • Soot From Wood Stoves Impacts Global Warming More Than Expected
  • Australia Pumps More Cash Into Drought-Hit Farms

  • Afghanistan Opium Cultivation Monitored By International DMC Constellation
  • Deimos And Surrey Satellite Technology Contract For Spanish Imaging Mission
  • NASA Satellite Data Helps Assess the Health of Florida's Coral Reef
  • Alcatel Alenia Space To Build SIRAL-2 Radar Altimeter For CryoSat-2

  • Russia Threatens Shell-Led Energy Group With Criminal Charges
  • WWF Warns Of Dire Impact From Global Over-Consumption
  • Hard Energy Dialog: Lose In The West, Gain In The East
  • Plutonium Or Greenhouse Gases - Weighing The Energy Options

  • Russia Tests Bird Flu Vaccine
  • Different Strategies Underlie The Ecology Of Microbial Invasions
  • Resistant Bug Battle Stepped Up
  • Indonesia Defends H5N1 Fight

  • New Human Stem Cell Center Expected To Speed Research And Keep It Safe
  • Oldest Complex Organic Molecules Found In Ancient Fossils
  • Trotting With Emus To Walk With Dinosaurs
  • It Took More than One Punch To KO the Dinos

  • Yellow River Turns Red In Northwest China
  • Estuaries Of China's Greatest Rivers Declared "Dead Zones"
  • UN Says Growing Pollution Threatens Recovery Of Damaged Reefs
  • Growing Concern Over Estrogen-Like Compounds In US Rivers

  • Lebanon Sees Revival Of Pre-Islamic Environmentalism
  • New Evidence Of Early Horse Domestication
  • Protein Helps Brain 'Clean House'
  • Slower Aging On The Horizon

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement