. Earth Science News .
EARLY EARTH
A bigger nursery for the solar system's first formed solids
by Anne M Stark for LLNL News
Livermore, CA (SPX) Oct 01, 2021

Allende meteorite that fell in Mexico in 1969 contains abundant calcium-aluminum-rich inclusions (CAIs). The highlighted area shows a large CAI similar to those used in this study.

The earliest solids formed in the solar system give clues to what radioactive species were made by the young sun, and which ones were inherited.

By studying isotopic variations of the elements vanadium (V) and strontium (Sr), an international team of researchers including scientists from Lawrence Livermore National Laboratory (LLNL) found that those variations are not caused by irradiation from the sun but are produced by condensation and evaporation reactions in the early solar system. The research appears in the Sept. 29 edition of Science Advances.

"It turns out that some of the short-lived radioactive isotopes researchers previously thought were products of irradiation from the early active sun are instead most likely inherited from our parent molecular cloud, which, in turn, tells us a significant amount about the cosmic neighborhood we grew up in," said LLNL cosmochemist Greg Brennecka, a co-author of the paper.

Calcium-Aluminum-rich inclusions (CAIs) in meteorites are the oldest dated solids that formed within the solar system. They carry crucial information regarding the environmental conditions of the earliest stages of the protoplanetary disk before any of the planets formed. This research also suggests that the oldest solids in our solar system could have formed further away from the sun than previously thought, with far-reaching implications regarding the dynamical structure of the nascent solar system.

"Our findings indicate that CAI formation during molecular cloud infall and disk build-up likely occurred at greater distances from the sun that we thought before, potentially up to planet-forming regions of the solar system," said LLNL postdoc Quinn Shollenberger, a co-author of the paper.

Astronomical observations of young stellar objects indicate that their surrounding accretionary disks are directly exposed to levels of X-ray and high-energy particle emissions that are orders of magnitude higher than observed for most main sequence stars. However, the duration and characteristics (gradual or impulsive flares) of these early stages of high stellar activity remain poorly understood.

Anomalous abundances of short-lived radionuclides in CAIs of carbonaceous chondrite meteorites have been suggested to be fossil records of dust irradiation by solar cosmic rays at the inner edge of the protoplanetary disk. But the new research topples that theory. "Knowing where CAIs formed is crucial for us to understand the distribution and evolution of planet-forming dust in the nascent solar system," said David Bekaert, first author of the study.

These refractory inclusions are present in objects that formed in various parts of the solar system, and have even been found in comets that formed very far away from the sun. If CAIs originally formed very close to the sun, it tells scientists there was very vigorous and fast mixing throughout the protoplanetary disk. However, if these objects only formed in planet-forming regions further from the sun, as suggested by the recent paper, then far less radial mixing is required to have taken place.

"Basically, it gives us a feel for how high the blender was turned on. The speed of that blender is important for understanding how material moved around the early solar system, and why the solar system is arranged the way it is (gas giants outside, terrestrial bodies inside)," Brennecka said. "This study greatly relaxes the area in which the first solids of the solar system could have formed."

Contributors to this work include LLNL scientist Ben Jacobsen, as well as researchers from Woods Hole Oceanographic Institution, University of Munster, University of California, Los Angeles, Goethe Universitat, Durham University and the National Museum of Natural History. The research was funded by LLNL's Laboratory Directed Research and Development program.

Research paper


Related Links
Lawrence Livermore National Laboratory
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Heavy bombardment experienced by the planets in the early Solar System
Heidelberg, Germany (SPX) Oct 01, 2021
At approximately 500 kilometres in size, Vesta is the largest known asteroid in the Solar System. Like its numerous companions in the Main Asteroid Belt, it is made of the 'primordial matter' of the Solar System. A new study published in Nature Astronomy concludes that Vesta was exposed to an extensive impact series of large rocky bodies much earlier than previously assumed. This suggests that the entire inner Solar System, and thus the rocky planets, was affected by such an early 'bombardment'. A ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Fires, floods, flying insects: 10 recent climate-fuelled disasters

U.S. Navy, Lebanese military to improve construction, humanitarian capabilities

Mexico's suit against US gunmakers edges ahead

Plea for Haiti aid amid political crisis, quake clean-up

EARLY EARTH
Urban mining for metals flashes forward

New model simplifies orbital radar trade-off studies for environmental monitoring

Beam diagnostics for future laser wakefield accelerators

In Siberia, a copper mine hopes to become a global energy pivot

EARLY EARTH
New Pacific Ocean circulation findings may hold key to better predicting impact of El Nino and La Nina

A river runs through it: Brussels uncovers hidden waterway

Senegal's old capital on the frontline against rising sea

Climate change threatens the Everglades, Florida's gem

EARLY EARTH
Protection of Antarctica waters must be increased: NGOs

Dynamics behind the remarkable August 2018 Greenland polynya formation

On thin ice: Near North Pole, a warning on climate change

UMass Amherst researcher to unravel the "last great Arctic mystery"

EARLY EARTH
Science seeks ancient plants to save favourite foods

Severe droughts dry up dreams of Turkish farmers

Grapes of change: French wines adapt to global warming

Dry year leaves Syria wheat farmers facing crop failure

EARLY EARTH
La Palma lava flows into the sea

At least 9 dead as cyclone lashes Oman, Iran

New U.N. tool designed to enhance flood prediction, disaster planning

Canary volcano zone residents flee danger but want to stay on

EARLY EARTH
Suspected jihadists kill 14 soldiers in Burkina Faso

Algeria escalates France dispute with flight ban

Taking delivery of copters, Mali lauds Russia partnership

UN peacekeeper killed in north Mali IED attack

EARLY EARTH
'We're ignorant': Illiteracy haunts isolated Venezuelan village

Great ape's consonant and vowel-like sounds travel over distance without losing meaning

Strangers less awkward, more interested in deep conversation than people think

Study reveals extent of impact of human settlement on island ecosystems









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.