. Earth Science News .
CHIP TECH
A brand-new way to produce electron spin currents
by Staff Writers
Fort Collins CO (SPX) May 03, 2016


Illustration only.

With apologies to Isaac Asimov, the most exciting phase to hear in science isn't "Eureka," but "That's funny...". A "that's funny" moment in a Colorado State University physics lab has led to a fundamental discovery that could play a key role in next-generation microelectronics.

Publishing in Nature Physics April 25, the scientists, led by Professor of Physics Mingzhong Wu in CSU's College of Natural Sciences, are the first to demonstrate using non-polarized light to produce in a metal what's called a spin voltage - a unit of power produced from the quantum spinning of an individual electron. Controlling electron spins for use in memory and logic applications is a relatively new field called spin electronics, or spintronics, and the subject of the 2007 Nobel Prize in Physics.

Wu and his group's passion is to find new, better ways to control electron spins, the physics of which isn't completely understood. Spintronics exploits the notion that electron spins can be manipulated and used to process and store information, with a fraction of the power needed in ubiquitous, conventional electronics.

Consider that the iPhone and every electronic device out there is built upon centuries of science around charge current - the physics of positive or negative charges flowing through a device. The perennial problem is the enormous power consumption of charge-current devices, and the electrical resistance that causes power loss in the form of heat - which is why your laptop keeps overheating.

It's these power and heat barriers that are holding smaller, more powerful electronics back. And it's why science is turning to spintronics, because it offers a completely new way of making a device work. To utilize power from an electron spin, there's no charge current necessary. All that's needed is a magnetic field or a magnetic material, which can orient the spins "up" or "down." The up and down spins are the analogue to positive and negative charges.

What the CSU scientists have found is a brand-new method for creating spin currents. Existing methods include using a charge current, microwaves or a heat source. But for the first time, the CSU team demonstrates using light - or in the quantum world, photons - to generate their spin currents.

Other scientists have done similar things, but they used a special kind of polarized light. Here, the CSU scientists used unpolarized, plain light - "a halogen bulb purchased at Ace Hardware," said graduate student David Ellsworth who is the first author on the paper. They demonstrated a "pure" spin current - involving no charge movement whatsoever. It was an unprecedented feat.

The breakthrough came about while the scientists were studying a different way to make spin currents, using heat from their halogen bulb, called the Spin Seebeck effect. They noticed some background data they couldn't explain.

Ever curious, they checked all possibilities and determined this seemingly light-induced spin current could be a new quantum phenomenon. They tested it by designing unique control measurements involving different magnetic insulators and metallic thin films, such as platinum. After replicating their results in the lab, they turned to theoreticians at UC Irvine and Fudan University to help them interpret the physics of what they'd discovered, and who are co-authors on the Nature Physics paper.

Wu said the discovery is too new to think about real applications; where they're at now is continuing to make breakthroughs in the understanding of spin currents. "Just like with the photovoltaic effect when it was first discovered, no one thought at first of a solar cell," Wu said. "Technologies take time before they are used in real devices. This is a fundamental, new discovery."

Said Jake Roberts, chair of the Department of Physics: "There have been tremendous technical advances in controlling light. What I see in this discovery is that now, they've linked light to spin control. Using a simple light source to produce a spin current offers new opportunities for power control and generation."

The researchers will continue exploring making spin currents with light by swapping out materials and trying different light sources. They demonstrated light control in the infrared range, Ellsworth said. Moving into the visible or UV range would likely offer more robust applications for devices.

"The framework for generating and detecting spin currents is non-trivial," Ellsworth explained. "Meanwhile, there are hundreds of years of generating charge currents and knowing how to measure them and manipulate them and characterize them. Spintronics is a new field, and devices are just now coming onto the market that utilize some small part of this."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Colorado State University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Spintronics for future information technologies
Berlin, Germany (SPX) May 02, 2016
They thereby demonstrated that this class of materials is suitable for data processing based on spin. The work has been published in the renowned periodical Physical Review B and was selected as "Editor's Suggestion" article. Future information technologies should employ considerably less energy for processing data. One exciting class of materials for this comprises topological insulators. ... read more


CHIP TECH
Chile quake at epicenter of expanding disaster and failure data repository

Kenya building collapse toll rises to 21

Personal cooling units on the horizon

Workers feeling the heat as climate change slashes productivity: report

CHIP TECH
Sea urchin's teeth inspire new design for space exploration device

First Light For ESO's VLT Four Laser Guide Star Facility

Anyone can try IBM's powerful quantum computer

Leonardo-Finmeccanica develops new E-scan radar

CHIP TECH
Wave of dead sea creatures hits Chile's beaches

Obama drinks water in Flint, hits Republicans

River food webs threatened by widespread hydropower practice

Scientists hope corrosion research prevents another Flint, Mich.

CHIP TECH
Study finds limit on evaporation to ice sheets, but that may change

Ice loss accelerating in Greenland's coastal glaciers

Extreme weather linked to high pressure over Greenland

Researchers discover fate of melting glacial ice in Greenland

CHIP TECH
Nanoparticles present sustainable way to grow food crops

Bioreactors ready for the big time

Australian researchers map micronutrients in white rice

Crop advances grow with protection

CHIP TECH
Floods following drought worsen Ethiopian hunger

Survivor rescued 13 days after deadly Ecuador quake

Survivors sought after 10 killed in Kenya building collapse

Chile ordered to pay $2.7 mn to 2010 tsunami victims

CHIP TECH
Severe drought forces Zimbabwe to sell off wildlife

Kenya torches world's biggest ivory bonfire to save elephants

Senegal signs accord giving US forces permament access to the country

Mozambique police probe reports of mass grave in rebel stronghold

CHIP TECH
Neandertals and Upper Paleolithic Homo sapiens had different dietary strategies

Hominins may have been food for carnivores 500,000 years ago

Chimp study explores the early origins of human hand dexterity

Toward quieting the brain









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.