. Earth Science News .
TECH SPACE
A fast, non-destructive test for 2-dimensional materials
by Staff Writers
University Park PA (SPX) May 05, 2017


Molecular model of a WS2 triangular monolayer targeted with a green laser (hv'). Red light (hv) is emitted from the edges where defects consisting of sulfur vacancies are located. Electron-hole pairs are bound at the vacancy site (see inset). Credit: Yuanxi Wang, Penn State.

Thinning a material down to a single-atom thickness can dramatically change that material's physical properties. For example, graphene, the best-known 2D material, has unparalleled strength and electrical conductivity, unlike its bulk form, graphite.

Researchers have begun to study hundreds of other 2D materials for the purposes of electronics, sensing, early cancer diagnosis, water desalination and a host of other applications. Now, a team of Penn State researchers in the Department of Physics and the Center for Two-Dimensional and Layered Materials (2DLM) has developed a fast, nondestructive optical method for analyzing defects in 2D materials.

"In the semiconductor industry, for example, defects are important because you can control properties through defects," said Mauricio Terrones, professor of physics, materials science and engineering and chemistry. "This is known as defect engineering. Industry knows how to control defects and which types are good for devices."

To really understand what is going on in a 2D material like tungsten disulfide, which has a single atom-thick layer of tungsten sandwiched between two atomic layers of sulfur, would require a high-power electron microscope capable of seeing individual atoms and the holes, called vacancies, where the atoms are missing.

"The benefit of transmission electron microscopy (TEM) is that you get an image and you can see directly what is going on - you get direct evidence," said Bernd Kabius, staff scientist at Penn State's Materials Research Institute, an expert in TEM and a coauthor on the paper, which appeared recently in Science Advances.

The downsides, according to Kabius, are an increased possibility of damage to the delicate 2D material, the complex preparation required of the sample, and the time involved - an entire day of instrument time to image a single sample and a week or more to interpret the results. For those reasons, and others, researchers would like to combine TEM with another method of looking at the sample that is simpler and faster.

The technique developed by Terrones and his team uses an optical method, fluorescent microscopy, in which a laser of a specific wavelength is shone on a sample. The excited electrons, pushed to a higher energy level, each emit a photon of a longer wavelength when they drop down to a lower energy level.

The longer wavelength can be measured by spectroscopy and gives information about the defect type and location on the sample. The team can then correlate the results with visual confirmation under the TEM. Theoretical calculations also helped to validate the optical results.

The sample must be placed in a temperature-controlled specimen holder and the temperature lowered to 77 Kelvin, almost 200 degrees Celsius below zero. At this temperature, the electron-hole pairs that produce the fluorescence are bound to the defect - in the case of this work a group of sulfur vacancies in the top layer of the sandwich - and emit a signal stronger than the pristine areas of the material.

"For the first time, we have established a direct relationship between the optical response and the amount of atomic defects in two-dimensional materials," said Victor Carozo, former postdoctoral scholar in Terrones' lab and first author of the work.

Terrones added, "For the semiconductor industry, this is a quick measurement, an optical nondestructive method to evaluate defects in 2D systems. The important thing is that we were able to correlate our optical method with TEM and also with atomistic simulations. I think this method can be very helpful in establishing a protocol for characterization of 2D crystalline materials."

In this context, co-author Yuanxi Wang, a postdoc in the 2DLM and a theorist, added, "Our calculations show that electrons trapped by vacancies emit light at wavelengths different than the emission from defect-free regions. Regions emitting light at these wavelengths can easily identify vacancies within samples."

Vincent Crespi, distinguished professor of physics, materials science and engineering and chemistry, Penn State, said "We can establish not just an empirical correlation between the presence of certain defects and modified light emission, but also identify the reason for that correlation through first-principles calculations."

Device applications that could be enhanced by this work include membranes with selective pore sizes for removing salt from water or for DNA sequencing, gas sensing when gas molecules bind to specific vacancies and the doping of 2D materials, which is the addition of foreign atoms to enhance properties.

Other authors on the Science Advances paper, "Optical Identification of Sulfur Vacancies: Bound Excitons at the Edges of Monolayer Tungsten Disulfide," are postdoctoral scholars Kazunori Fujisawa, Bruno Carvalho and Amber McCreary; doctoral students Simin Feng, Zhong Lin and Chanjing Zhou; and research associates Nestor Perea-Lopez and Ana Laura Elias. The National Science Foundation and the U.S. Army Research Office supported this work.

TECH SPACE
A material inspired by a sea worm changes according to the environment
Madrid, Spain (SPX) May 01, 2017
Scientists at the Massachusetts Institute of Technology (MIT) have looked at a sea worm called Nereis virens in order to create a changing material, which has the ability to be flexible or rigid at convenience. The jaw of this worm has a texture similar to gelatin, but if the environment varies, the material may adopt the hardness of dentin or human bones. Chemical engineer Francisco Marti ... read more

Related Links
Penn State
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
EU urges China to curb dinghy sales in migrant trafficking fight

20 sentenced to prison for deadly 2015 China landslide

Affluent countries contribute less to wildlife conservation than the rest of the world

US opioid crisis at epidemic proportions

TECH SPACE
Why space dust emits radio waves upon crashing into a spacecraft

NASA Seeks 'FabLab' Concepts for In-Space Manufacturing

NASA Awards $100,000 in First Printing Stage of 3D-Printed Habitat Challenge

Shape-changing fog screen invented

TECH SPACE
Some corals adapting to warming climate

How do fishes perceive their environment?

Decades of data on world's oceans reveal a troubling oxygen decline

Kongsberg Maritime chosen for new German research vessel

TECH SPACE
Satellites track Antarctic ice loss over decades

Antarctic ice rift spreads

Antarctic Peninsula ice more stable than thought

Canada: walrus, caribou face extinction risk in Arctic

TECH SPACE
Syngenta shareholders accept ChemChina offer

Conservation agriculture offers tired soil remedies

Can edible insects help curb global warming?

Researchers track impact of Brazil's 'Soy Moratorium'

TECH SPACE
Guatemala volcano eruption subsides after hasty evacuations

Geologists use radioactive clock to document longest earthquake record

Scientists discover how world's biggest volcanoes formed

Trail of damage as Cyclone Donna skirts Vanuatu

TECH SPACE
Fishing with guns on a lake under threat in Kenya

Mozambique's opposition extends truce indefinitely

First US military death in Somalia since 'Black Hawk Down'

Rocket attack on UN camp in Mali kills one, wounds 9

TECH SPACE
Population growth, spread responsible for human advancement

Brazil's indigenous leader Raoni: youths losing their culture

Early evidence of Middle Stone Age projectiles found in South Africa's Sibudu Cave

Bonobos may be better representation of last common ancestor with humans









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.