. Earth Science News .
ENERGY TECH
A new approach to rechargeable batteries
by Staff Writers
Boston MA (SPX) Feb 05, 2018

A type of battery first invented nearly five decades ago could catapult to the forefront of energy storage technologies, thanks to a new finding by researchers at MIT.

A type of battery first invented nearly five decades ago could catapult to the forefront of energy storage technologies, thanks to a new finding by researchers at MIT and other institutions. The battery, based on electrodes made of sodium and nickel chloride and using a new type of metal mesh membrane, could be used for grid-scale installations to make intermittent power sources such as wind and solar capable of delivering reliable baseload electricity.

The findings are being reported in the journal Nature Energy, by a team led by MIT professor Donald Sadoway, postdocs Huayi Yin and Brice Chung, and four others.

Although the basic battery chemistry the team used, based on a liquid sodium electrode material, was first described in 1968, the concept never caught on as a practical approach because of one significant drawback: It required the use of a thin membrane to separate its molten components, and the only known material with the needed properties for that membrane was a brittle and fragile ceramic. These paper-thin membranes made the batteries too easily damaged in real-world operating conditions, so apart from a few specialized industrial applications, the system has never been widely implemented.

But Sadoway and his team took a different approach, realizing that the functions of that membrane could instead be performed by a specially coated metal mesh, a much stronger and more flexible material that could stand up to the rigors of use in industrial-scale storage systems.

"I consider this a breakthrough," Sadoway says, because for the first time in five decades, this type of battery - whose advantages include cheap, abundant raw materials, very safe operational characteristics, and an ability to go through many charge-discharge cycles without degradation - could finally become practical.

While some companies have continued to make liquid-sodium batteries for specialized uses, "the cost was kept high because of the fragility of the ceramic membranes," says Sadoway, the John F. Elliott Professor of Materials Chemistry.

"Nobody's really been able to make that process work," including GE, which spent nearly 10 years working on the technology before abandoning the project.

As Sadoway and his team explored various options for the different components in a molten-metal-based battery, they were surprised by the results of one of their tests using lead compounds.

"We opened the cell and found droplets" inside the test chamber, which "would have to have been droplets of molten lead," he says. But instead of acting as a membrane, as expected, the compound material "was acting as an electrode," actively taking part in the battery's electrochemical reaction.

"That really opened our eyes to a completely different technology," he says. The membrane had performed its role - selectively allowing certain molecules to pass through while blocking others - in an entirely different way, using its electrical properties rather than the typical mechanical sorting based on the sizes of pores in the material.

In the end, after experimenting with various compounds, the team found that an ordinary steel mesh coated with a solution of titanium nitride could perform all the functions of the previously used ceramic membranes, but without the brittleness and fragility. The results could make possible a whole family of inexpensive and durable materials practical for large-scale rechargeable batteries.

The use of the new type of membrane can be applied to a wide variety of molten-electrode battery chemistries, he says, and opens up new avenues for battery design.

"The fact that you can build a sodium-sulfur type of battery, or a sodium/nickel-chloride type of battery, without resorting to the use of fragile, brittle ceramic - that changes everything," he says.

The work could lead to inexpensive batteries large enough to make intermittent, renewable power sources practical for grid-scale storage, and the same underlying technology could have other applications as well, such as for some kinds of metal production, Sadoway says.

Sadoway cautions that such batteries would not be suitable for some major uses, such as cars or phones. Their strong point is in large, fixed installations where cost is paramount, but size and weight are not, such as utility-scale load leveling. In those applications, inexpensive battery technology could potentially enable a much greater percentage of intermittent renewable energy sources to take the place of baseload, always-available power sources, which are now dominated by fossil fuels.

Research paper


Related Links
Massachusetts Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Making fuel cells for a fraction of the cost
Riverside CA (SPX) Feb 03, 2018
Fuel cells have the potential to be a clean and efficient way to run cars, computers, and power stations, but the cost of producing them is limiting their use. That's because a key component of the most common fuel cells is a catalyst made from the precious metal platinum. In a paper published in Small, researchers at the University of California, Riverside, describe the development of an inexpensive, efficient catalyst material for a type of fuel cell called a polymer electrolyte membrane fuel ce ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Fukushima operator aims to double visitors by Tokyo Olympics

Dutch 'ill-prepared' for cross-border nuclear accident: probe

Dutch to help tourism firms on storm-hit Caribbean isles

Researchers identify 'anxiety cells' inside the brains of mice

ENERGY TECH
Quantum control

Virtual reality goes magnetic

Changing the color of 3-D printed objects

New method for synthesizing novel magnetic material

ENERGY TECH
Paradise lost: 'Anote's Ark' shows Kiribati on the brink

EU seeks to give millions better access to drinking water

World Bank funds fight against Baghdad water woes

Tempers flare at Cape Town water collection point

ENERGY TECH
Polar bears can't catch enough seals to stay fed: study

Arctic lakes are emitting young carbon

Heat loss from the Earth triggers ice sheet slide towards the sea

Mothers and young struggle as Arctic warms

ENERGY TECH
Australia toughens foreign investment rules amid China concerns

Vines from Napa, Bordeaux tough against heat, drought

Learn to value your food, says Brazil's top chef

Dairy sector trembles at EU powdered milk mountain

ENERGY TECH
Gasps and awe as supermoon rises over erupting Philippine volcano

Guatemala volcano eruption subsides after 20 hours

Seine inches higher, keeping Paris on alert

90,000 flee Philippine volcano stretching relief camps

ENERGY TECH
Mali mayor kidnapped by armed men: family

Benin's threatened Pendjari National Park gets $23.5m boost

Suicide bomber kills four Malian soldiers

Two customs officers killed in Mali 'jihadist' attack

ENERGY TECH
Study details Peking Man's teeth

Modern human brain organization emerged only recently

Evolving sets of gene regulators explain some of our differences from other primates

First came Homo sapiens, then came the modern brain









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.