. Earth Science News .
STELLAR CHEMISTRY
A new phase in Bose-Einstein condensate of light particles observed
by Staff Writers
Bonn, Germany (SPX) Apr 02, 2021

Prof. Dr. Martin Weitz with the optical setup at the measuring table at the Institute of Applied Physics at the University of Bonn.

A single "super photon" made up of many thousands of individual light particles: About ten years ago, researchers at the University of Bonn produced such an extreme aggregate state for the first time and presented a completely new light source. The state is called optical Bose-Einstein condensate and has captivated many physicists ever since, because this exotic world of light particles is home to its very own physical phenomena.

Researchers led by Prof. Dr. Martin Weitz, who discovered the super photon, and theoretical physicist Prof. Dr. Johann Kroha have returned from their latest "expedition" into the quantum world with a very special observation. They report of a new, previously unknown phase transition in the optical Bose-Einstein condensate. This is a so-called overdamped phase. The results may in the long term be relevant for encrypted quantum communication. The study has been published in the journal Science.

The Bose-Einstein condensate is an extreme physical state that usually only occurs at very low temperatures. What's special: The particles in this system are no longer distinguishable and are predominantly in the same quantum mechanical state, in other words they behave like a single giant "superparticle". The state can therefore be described by a single wave function.

In 2010, researchers led by Martin Weitz succeeded for the first time in creating a Bose-Einstein condensate from light particles (photons). Their special system is still in use today: Physicists trap light particles in a resonator made of two curved mirrors spaced just over a micrometer apart that reflect a rapidly reciprocating beam of light. The space is filled with a liquid dye solution, which serves to cool down the photons.

This is done by the dye molecules "swallowing" the photons and then spitting them out again, which brings the light particles to the temperature of the dye solution - equivalent to room temperature. Background: The system makes it possible to cool light particles in the first place, because their natural characteristic is to dissolve when cooled.

Clear separation of two phases
Phase transition is what physicists call the transition between water and ice during freezing. But how does the particular phase transition occur within the system of trapped light particles?

The scientists explain it this way: The somewhat translucent mirrors cause photons to be lost and replaced, creating a non-equilibrium that results in the system not assuming a definite temperature and being set into oscillation. This creates a transition between this oscillating phase and a damped phase. Damped means that the amplitude of the vibration decreases.

"The overdamped phase we observed corresponds to a new state of the light field, so to speak," says lead author Fahri Emre Ozturk, a doctoral student at the Institute for Applied Physics at the University of Bonn. The special characteristic is that the effect of the laser is usually not separated from that of Bose-Einstein condensate by a phase transition, and there is no sharply defined boundary between the two states. This means that physicists can continually move back and forth between effects.

"However, in our experiment, the overdamped state of the optical Bose-Einstein condensate is separated by a phase transition from both the oscillating state and a standard laser," says study leader Prof. Dr. Martin Weitz. "This shows that there is a Bose-Einstein condensate, which is really a different state than the standard laser. "In other words, we are dealing with two separate phases of the optical Bose-Einstein condensate," he emphasizes.

The researchers plan to use their findings as a basis for further studies to search for new states of the light field in multiple coupled light condensates, which can also occur in the system.

"If suitable quantum mechanically entangled states occur in coupled light condensates, this may be interesting for transmitting quantum-encrypted messages between multiple participants," says Fahri Emre Ozturk.

Research Report: "Observation of a Non-Hermitian Phase Transition in an Optical Quantum Gas"


Related Links
University Of Bonn
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Harnessing light to enable next-generation microwave systems
Washington DC (SPX) Mar 24, 2021
Electronic oscillators lie at the heart of virtually all microelectronic systems, generating the clock signals used in digital electronics and the precise frequencies that enable radio frequency (RF) sensors and communications. While an ideal oscillator provides a perfect signal at a single frequency, imperfections degrade the spectral purity of real-world components. Such impairments, broadly quantified as phase noise, ultimately limit the performance of many military radars and commercial 5G sys ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Vatican urges 'motherly care' for climate refugees

US military offers to help in blocked Suez Canal

Food ferried to isolated Australians as flood threat lingers

Models link 1 degree of global warming to 50% spike in population displacement

STELLAR CHEMISTRY
A new technique to synthesize superconducting materials

Hitachi buys US software firm GlobalLogic for $9.6 bn

NASA tests mixed reality for mission operations for exploration

Tires turned into graphene that makes stronger concrete

STELLAR CHEMISTRY
Seagrasses turn back the clock on ocean acidification

Egypt's Sisi warns Ethiopia dam risks 'unimaginable instability'

US authorities probing alarming spike in manatee deaths

Filter made from a tree branch cleans contaminated water

STELLAR CHEMISTRY
In the deep sea, the last ice age is not yet over

Russia trolls Suez Canal with northern 'alternative'

Army releases Arctic strategy focused on Russia, climate change

Icy ocean worlds seismometer passes further testing in Greenland

STELLAR CHEMISTRY
A third of global farmland at 'high' pesticide pollution risk

Study: Meat, dairy companies lack strategy to fully address emissions

Beef-addicted Uruguay aiming to make farming greener

Rodent rampage: Mouse plague sweeps Australia's east

STELLAR CHEMISTRY
Japan raises alert level after volcano erupts

Guatemala's Pacaya volcano continues erupting after 50 days

Australia begins 'long haul' to recovery as floodwaters recede

Iceland's volcanic eruption could be a long hauler

STELLAR CHEMISTRY
Central Mali deaths: What we know

Al-Shabaab calls for attacks on US, French interests in Djibouti

Jihadists seize northern Mozambique town: security sources

Deadly strike on French troops in I.Coast probed in Paris trial

STELLAR CHEMISTRY
Overhearing negative social remarks can inspire bias in children

Natural soundscapes boost health markers, lower stress

Bones of ancient Mayan ambassador reveal a privileged but difficult life

Humans evolved to be the water-saving ape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.