Subscribe free to our newsletters via your
. Earth Science News .




TIME AND SPACE
A new tool measures the distance between phonon collisions
by Staff Writers
Boston MA (SPX) Jun 05, 2015


File image.

Today's computer chips pack billions of tiny transistors onto a plate of silicon within the width of a fingernail. Each transistor, just tens of nanometers wide, acts as a switch that, in concert with others, carries out a computer's computations. As dense forests of transistors signal back and forth, they give off heat - which can fry the electronics, if a chip gets too hot.

Manufacturers commonly apply a classical diffusion theory to gauge a transistor's temperature rise in a computer chip. But now an experiment by MIT engineers suggests that this common theory doesn't hold up at extremely small length scales.

The group's results indicate that the diffusion theory underestimates the temperature rise of nanoscale heat sources, such as a computer chip's transistors. Such a miscalculation could affect the reliability and performance of chips and other microelectronic devices.

"We verified that when the heat source is very small, you cannot use the diffusion theory to calculate temperature rise of a device. Temperature rise is higher than diffusion prediction, and in microelectronics, you don't want that to happen," says Professor Gang Chen, head of the Department of Mechanical Engineering at MIT. "So this might change the way people think about how to model thermal problems in microelectronics."

The group, including graduate student Lingping Zeng and Institute Professor Mildred Dresselhaus of MIT, Yongjie Hu of the University of California at Los Angeles, and Austin Minnich of Caltech, has published its results this week in the journal Nature Nanotechnology.

Phonon mean free path distribution
Chen and his colleagues came to their conclusion after devising an experiment to measure heat carriers' "mean free path" distribution in a material. In semiconductors and dielectrics, heat typically flows in the form of phonons - wavelike particles that carry heat through a material and experience various scatterings during their propagation.

A phonon's mean free path is the distance a phonon can carry heat before colliding with another particle; the longer a phonon's mean free path, the better it is able to carry, or conduct, heat.

As the mean free path can vary from phonon to phonon in a given material - from several nanometers to microns - the material exhibits a mean free path distribution, or range. Chen, the Carl Richard Soderberg Professor in Power Engineering at MIT, reasoned that measuring this distribution would provide a more detailed picture of a material's heat-carrying capability, enabling researchers to engineer materials, for example, using nanostructures to limit the distance that phonons travel.

The group sought to establish a framework and tool to measure the mean free path distribution in a number of technologically interesting materials. There are two thermal transport regimes: diffusive regime and quasiballistic regime.

The former returns the bulk thermal conductivity, which masks the important mean free path distribution. To study phonons' mean free paths, the researchers realized they would need a small heat source compared with the phonon mean free path to access the quasiballistic regime, as larger heat sources would essentially mask individual phonons' effects.

Creating nanoscale heat sources was a significant challenge: Lasers can only be focused to a spot the size of the light's wavelength, about one micron - more than 10 times the length of the mean free path in some phonons.

To concentrate the energy of laser light to an even finer area, the team patterned aluminum dots of various sizes, from tens of micrometers down to 30 nanometers, across the surface of silicon, silicon germanium alloy, gallium arsenide, gallium nitride, and sapphire. Each dot absorbs and concentrates a laser's heat, which then flows through the underlying material as phonons.

In their experiments, Chen and his colleagues used microfabrication to vary the size of the aluminum dots, and measured the decay of a pulsed laser reflected from the material - an indirect measure of the heat propagation in the material. They found that as the size of the heat source becomes smaller, the temperature rise deviates from the diffusion theory.

They interpret that as the metal dots, which are heat sources, become smaller, phonons leaving the dots tend to become "ballistic," shooting across the underlying material without scattering. In these cases, such phonons do not contribute much to a material's thermal conductivity. But for much larger heat sources acting on the same material, phonons tend to collide with other phonons and scatter more often. In these cases, the diffusion theory that is currently in use becomes valid.

A detailed transport picture
For each material, the researchers plotted a distribution of mean free paths, reconstructed from the heater-size-dependent thermal conductivity of a material. Overall, they observed the anticipated new picture of heat conduction: While the common, classical diffusion theory is applicable to large heat sources, it fails for small heat sources. By varying the size of heat sources, Chen and his colleagues can map out how far phonons travel between collisions, and how much they contribute to heat conduction.

Zeng says that the group's experimental setup can be used to better understand, and potentially tune, a material's thermal conductivity. For example, if an engineer desires a material with certain thermal properties, the mean free path distribution could serve as a blueprint to design specific "scattering centers" within the material - locations that prompt phonon collisions, in turn scattering heat propagation, leading to reduced heat carrying ability.

Although such effects are not desirable in keeping a computer chip cool, they are suitable in thermoelectric devices, which convert heat to electricity. For such applications, materials that are electrically conducting but thermally insulating are desired.

"The important thing is, we have a spectroscopy tool to measure the mean free path distribution, and that distribution is important for many technological applications," Zeng says.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
How to cut a vortex into slices
Moscow, Russia (SPX) Jun 05, 2015
A lot of problems, associated with the mixing of the liquid in the microchannels, could be solved via proper organization of the inhomogeneous slip on the walls of these channels. This is the conclusion made by the joint group of Russian and German scientists lead by Olga Vinogradova, who is a professor at the M.V. Lomonosov Moscow State University and also a head of laboratory at the A.N. ... read more


TIME AND SPACE
Crossing minefields to get to school in Colombia

China ship tragedy toll above 400, relatives and workers remember dead

UN's new weather chief seeks to improve disaster alerts

Backlash grows as Italy migrant arrivals top 50,000

TIME AND SPACE
New composite material as CO2 sensor

High-temperature superconductivity in atomically thin films

Golden shipping container transports Americans to parts unknown

Spinning a new version of silk

TIME AND SPACE
Warmer, lower-oxygen oceans will shift marine habitats

Invasive climbing perch is nearing the Australian mainland

Acid saline groundwaters and lakes of southern Western Australia

Trouble in the tide pools

TIME AND SPACE
Ancient algae found deep in tropical glacier

NASA's Operation IceBridge concludes 2015 Arctic campaign

The ebb and flow of Greenland's glaciers

CryoSat detects sudden ice loss in Southern Antarctic Peninsula

TIME AND SPACE
Scientists see a natural place for 'rewilded' plants in organic farming

Citizen science helps protect nests of a raptor in farmland

Bee populations face another threat: aluminum

Move over Arabidopsis, there's a new model plant in town

TIME AND SPACE
Aftershock assessment

Highly explosive volcanism at Galapagos

Little-known quake, tsunami hazards lurk offshore of Southern California

Flash floods kill 16 in SW Pakistan: officials

TIME AND SPACE
I. Coast's former colonial capital looks to the future on centenary

Mali's Tuareg-led rebels to sign peace deal June 20: chief

The Kenyan town kept afloat by a foreign army

Probe Nigeria military top brass for war crimes: Amnesty

TIME AND SPACE
World's last tribes on collision course with modern society

Out of Africa via Egypt

New human ancestor species from Ethiopia lived alongside Lucy's species

Lethal wounds on skull may indicate 430,000-year-old murder




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.