Subscribe free to our newsletters via your
. Earth Science News .




TECH SPACE
A protective shield for sensitive catalysts
by Staff Writers
Bochum, Germany (SPX) Jun 18, 2015


File image.

An international research team has found a way of protecting sensitive catalysts from oxygen-caused damage. In the future, this could facilitate the creation of hydrogen fuel cells with molecular catalysts or with biomolecules such as the hydrogenase enzyme. To date, this could only be accomplished using the rare and expensive precious metal platinum.

Together with their French colleagues, researchers from Bochum and Mulheim describe the way in which a hydrogel can serve as a "protective shield" for biomolecules by two articles written in the journals Angewandte Chemie and the Journal of the American Chemical Society.

Requirements on catalysts are difficult to reconcile
In order to be suitable for industrial applications, catalysts have to be efficient, stable and affordable; in addition, they have to be tailor-cut for one specific chemical reaction. "Uniting all of these requirements in one molecule is a considerable challenge," says Dr Nicolas Plumere from the Chemistry Department at the Ruhr-Universitat Bochum.

However, a novel hydrogel in which catalysts are embedded could greatly simplify the development of fuel cell catalysts in the future. To explore this possibility, the researchers from Bochum began a collaborative project with colleagues from the Max Planck Institute for Chemical Energy Conversion in Mulheim and from Aix Marseille University and the Centre National de la Recherche Scientifique (CNRS) in France.

Hydrogel acting as solvent and as protective environment
For their experiments, the German team utilised the hydrogenase enzyme from the green alga Chlamydomonas rheinhardtii; it splits hydrogen into protons and electrons. Typically, even trace amounts of oxygen cause irreversible damage to this biomolecule. However, the researchers incorporated it in a hydrogel which assumes two functions: it acts as a solvent, ensuring that all reaction partners reach the enzyme quickly and easily.

At the same time, it provides a protective environment in which the oxygen cannot penetrate through to the enzyme, even if it is present at relatively high concentrations. The trick: the hydrogenase activity leads to the creation of electrons; they wander through the hydrogel and are transmitted to the oxygen, thus converting it into a harmless form, namely water.

Catalyst design could become considerably easier in the future
Using simulations and experiments, the German-French team demonstrated another important property of hydrogels. The activity of many catalysts decreases over time due to exposure to deactivating molecules. Some can be rendered functional again through special reactivation processes. Notably, however, the hydrogel protects even those catalysts for which a reactivation process does not exist.

"In future, we will thus no longer have to pay attention to the robustness or suitable reactivation processes when developing catalysts for technical applications," explains Olaf Rudiger, Chemist at the Max Planck Institute for Chemical Energy Conversion. "We can focus solely on maximising the catalyst's activity. This will simplify the development process to a considerable degree and open up new possibilities for the manufacture of fuel cells."

A. Alsheikh Oughli, F. Conzuelo, M. Winkler, T. Happe, W. Lubitz, W. Schuhmann, O. Rudiger, N. Plumere (2015): Protection from oxidative damage of the O2 sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii using a redox hydrogel, Angewandte Chemie International Edition, DOI: 10.1002/anie.201502776R1; V. Fourmond, S. Stapf, H. Li, D. Buesen, J. Birrell, R. Olaf; W. Lubitz, W. Schuhmann, N. Plumere, C. Leger (2015): The mechanism of protection of catalysts supported in redox hydrogel films, Journal of the American Chemical Society, DOI: 10.1021/jacs.5b01194


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ruhr-University Bochum
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
New honeycomb-inspired design delivers superior protection from impact
Austin TX (SPX) Jun 18, 2015
Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a groundbreaking new energy-absorbing structure to better withstand blunt and ballistic impact. The technology, called negative stiffness (NS) honeycombs, can be integrated into car bumpers, military and athletic helmets and other protective hardware. The technology could have major implic ... read more


TECH SPACE
Malaysia says committed to MH370 hunt despite ship pull-out

Nepal quake leaves remote villages cut off as rains begin

Long, hard road for Nepal's disabled quake survivors

Escaped tiger kills man in Georgia

TECH SPACE
Penn research simplifies recycling of rare-earth magnets

Penn researchers develop a new type of gecko-like gripper

Squid inspires camouflaging smart materials

Video game titans get back in stride at E3

TECH SPACE
China electricity giant starts building new hydropower stations

Genetic switch lets marine diatoms do less work at higher CO2

Indigenous Panamanians block highway to protest dam

Genetically modified fish on the loose?

TECH SPACE
Arctic Ocean rapidly becoming more corrosive to marine species

Fossils Explain How Life Coped During Snowball Earth

Boreal peatlands not a global warming time bomb

Ice sheet collapse triggered ancient sea level peak

TECH SPACE
Evolution study finds massive genome shift in one generation

Canada requests sanctions against US over meat labelling spat

Wild bees are unpaid farmhands worth billions: study

EU lawmakers back animal cloning ban

TECH SPACE
Malawi appeals for $500 million to repair flood damage

Origins of Red Sea's 'cannon earthquakes' revealed in new study

More than 10,000 flee erupting Indonesian volcano

Lions, tigers on the loose in deadly Tbilisi floods

TECH SPACE
Chad war planes bomb Boko Haram after attacks

Mali rebels explain peace accord to refugees in Mauritania

Pro-government fighters refuse to quit key town in Mali

Mali troops get reacquainted with lost north

TECH SPACE
Stone tools from Jordan point to dawn of division of labor

Cell density remains constant as brain shrinks with age

Manuela's Madrid: a pretty, gritty city

Technology offers bird's-eye view of foreclosure affects on landscape




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.