. Earth Science News .
OIL AND GAS
A 'smart dress' for oil-degrading bacteria
by Staff Writers
Kazan, Russia (SPX) Jul 27, 2016


(a,b) Targeted movement of magnetic cells was facilitated by external magnetic field (in liquid media); (c) sedimentation of magnetically concentrated cells; (d) targeted movement and growth of magnetic cells on solid surface (inset shows a higher-magnification view of cells arranged on the surface).

Bionanotechnology research is targeted on functional structures synergistically combining macromolecules, cells, or multicellular assemblies with a wide range of nanomaterials. Providing micrometer-sized cells with tiny nanodevices expands the uses of the cultured microorganisms and requires nanoassembly on individual live cells.

Surface engineering functionalizes the cell walls with polymer layers and/or nanosized particles and has been widely employed to modify the intrinsic properties of microbial cells. Cell encapsulation allows fabricating live microbial cells with magnetic nanoparticles onto cell walls, which mimics natural magnetotactic bacteria.

For this study researchers from Kazan Federal University and Louisiana Tech University chose Alcanivorax borkumensis marine bacteria as a target microorganism for cell surface engineering with magnetic nanoparticles for the following reasons:

(1) these hydrocarbon-degrading bacteria are regarded as an important tool in marine oil spill remediation and potentially can be used in industrial oil-processing bioreactors, therefore the external magnetic manipulations with these cells seems to be practically relevant;

(2) A. borkumensis are marine Gram-negative species having relatively fragile and thin cell walls, which makes cell wall engineering of these bacteria particularly challenging.

Rendering oil-degrading bacteria with artificially added magnetic functionality is important to attenuate their properties and to expand their practical use.

Cell surface engineering was performed using polycation-coated magnetic nanoparticles, which is a fast and straightforward process utilizing the direct deposition of positively charged iron oxide nanoparticles onto microbial cells during a brief incubation in excessive concentrations of nanoparticles.

Gram-negative bacteria cell walls are built from the thin peptidoglycan layer sandwiched between the outer membrane and inner plasma membrane, with lipopolysaccharides rendering the overall negative cell charge, therefore cationic particles will attach to the cell walls due to electrostatic interactions.

Rod-like 0.5-um diameter Gram-negative bacteria A. borkumensis were coated with 70?100 nm magnetite shells. The deposition of nanoparticles was performed with extreme care to ensure the survival of magnetized cells.

The development of biofilms on hydrophobic surface is a very important feature of A. borkumensis cells because this is how these cells attach to the oil droplets in natural environments. Consequently, any cell surface modification should not reduce their ability to attach and proliferate as biofilms.

Here, at all concentrations of PAH- magnetite nanoparticles investigated, authors of the study detected the similar biofilm growth patterns. Overall, the magnetized cells were able to proliferate and exhibited normal physiological activity.

The next generations of the bacteria have a tendency to remove the artificial shell returning to the native form. Such magnetic nanoencapsulation may be used for the A. borkumensis transportation in the bioreactors to enhance the spill oil decomposition at certain locations.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Kazan Federal University
All About Oil and Gas News at OilGasDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
OIL AND GAS
Total lands LNG deal with Japan
Paris (UPI) Jul 22, 2016
French energy company Total said Friday it landed a 17-year agreement to supply liquefied natural gas to the Japanese market starting in 2019. Total signed a binding agreement with Japanese utility Chugoku Electric for the direct supply of LNG sourced from the French company's global portfolio. "Strengthening our presence in Japan, the world's largest LNG importer, through long-t ... read more


OIL AND GAS
Study: Crumbling school buildings yield crummy scores

Taiwan buses recalled after deadly fire disaster

Ex-Marine 'assassinated' Baton Rouge cops: police

Ex-Marine 'assassinated' Baton Rouge cops

OIL AND GAS
Rice's 'antenna-reactor' catalysts offer best of both worlds

'Jumping film' harnesses the power of humidity

Chemists create microscopic and malleable building blocks

Computational design tool transforms flat materials into 3-D shapes

OIL AND GAS
Ocean acidification - the limits of adaptation

Ocean Glider tells quite a tale after 74 days at sea

South Africa's great white sharks face extinction: study

Massive sewage spill forces closure of Los Angeles beaches

OIL AND GAS
NASA's Field Campaign Investigates Arctic North American Ecosystems

Warming Arctic could disrupt migration patterns of millions of birds

More Chinese vessels to sail the Arctic: shipping firm

Ocean warming to blame for Antarctic Peninsula glacier retreat

OIL AND GAS
ANU leads effort to develop drought-proof crops

How plants can grow on salt-affected soils

Scientists sequence genome of 6,000-year-old barley

Researchers build trenches to curb nitrogen runoff, algae growth

OIL AND GAS
Tropical Storm Frank forms in Pacific off Mexico: NHC

Super-eruptions may give a year's warning before they blow

Nearly 100 dead or missing from China rains

China rain leaves one dead, 34 missing: report

OIL AND GAS
Mali opens terrorism inquiry after 17 soldiers killed

Armed group kills 17 soldiers at Mali base: ministry

Bashir reshuffles senior Sudanese military officials: army

Low uptake of space technology science slows Africa's growth: experts

OIL AND GAS
Technological and cultural innovations amongst early humans not sparked by climate change

Genomes from Zagros mountains reveal different Neolithic ancestry

Cave art reveals religious encounters between Europeans and Native Americans

Changes in primate teeth linked to rise of monkeys









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.