![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
Washington - Aug 21, 2001 Over the past two decades, advances in a number of scientific disciplines have helped us better understand the nature and evolution of life on Earth. These scientific developments also have helped lay the foundation for astrobiology, opening up new possibilities for the existence of life in the Solar System and beyond. Carl Woese of the University of Illinois published the first universal tree of life in 1987. The universal tree is based on genetic sequence comparisons, which showed that there are three major domains - Archaea, Bacteria and Eukarya. These three domains consist of dozens of kingdoms, nearly all of which are microbial. This is in contrast to the traditional five kingdom view of the biosphere (Animals, Plants, Fungi, Protists and Monera), where multicellular plants and animals are given prominence. Perhaps one of the most fundamental things we have recognized from the universal tree is that we live on a microbial planet. Microscopic life dominated the first 85% of biospheric history.
Evidence from Paleontology The interval of Earth history preceding the Cambrian (called the Precambrian) was regarded as being largely devoid of fossils and life. However, in 1993, J. William Schopf of UCLA reported bacterial microfossils from stromatolite-bearing sequences in western Australia dated at nearly 3.5 billion years. Then in 1996, Steven Mojzsis of the University of Colorado described possible chemical signatures for life from 3.9 billion-year-old rocks from Greenland. These are the current record holders for the oldest life on Earth. These advances in Precambrian paleontology have pushed back the record of life on our planet to within half a billion years of the time when the first viable habitats existed on Earth. This suggests that once the conditions necessary for life's origin were in place, it arose very quickly. Exactly how quickly, we don't yet know, but certainly on a geologic time scale, it was much shorter than previously thought.
Impact Frustration of Early Biosphere Development About 4 billion years ago, the rate and size of impacts dropped off, allowing the Earth to retain the water and organics delivered by comets and other icy objects. A stable atmosphere and ocean developed, providing the first suitable environments for life. However, models also suggest that as late as 3.8 billion years ago, the emerging biosphere may have experienced one or more giant impacts. These impactors would have been capable of vaporizing the oceans and sterilizing surface environments. The deepest branches of the universal tree -- those presumably lying closest to the common ancestor of life -- all share an interesting property: a preference for very high temperatures. For some scientists, this implies that life probably got started at high temperatures, perhaps around the deep-sea hydrothermal vents. For others (myself included), it seems more likely that we are not seeing the environment of life's origin, but rather environments that prevailed after the last giant impact. These forms may simply be the descendants of organisms that were able to survive by hiding out in hydrothermal environments.
The Subsurface Biosphere As this type of exploration continued, complex vent communities were discovered in virtually every ocean basin, proving the remarkable ability of these organisms to colonize even the most widely dispersed habitats. There are now hints of photosynthetic organisms that are able to utilize the weak thermoluminescent radiation given off by the hot vents. This has opened up the intriguing possibility that photosynthesis may have evolutionary roots in deep sea vent settings. More recently it was discovered that life also thrives in deep subsurface environments where interactions between water and rock yield available energy. While many subsurface organisms utilize the "filtered-down" organic compounds produced by photosynthetic surface life, some species are able to make their own organic molecules from the purely inorganic substrates that come from simple weathering reactions between groundwater and rock.
The Extremes of Life In addition to environmental adaptation, some microbial species show evidence of remarkably prolonged viability. In even the driest deserts on Earth, some species survive by living inside porous rocks where they find a safe haven from UV radiation. They spring to life only when the water needed for growth becomes available. Microbes have been isolated from Siberian permafrost, where they had remained in deep freeze for about 3 million years. Bacteria have been germinated from 30 million-year-old spores that were preserved in amber. Salt-loving microbes have been cultured from rock salt that is hundreds of millions of years old.
The Search for Extraterrestrial Life Mars may have an extensive ground water system located several kilometers below the surface. This possibility was bolstered by the recent discovery of small channels caused by surface fluid seeps. If liquid water is proven to be the agent that formed these features, then the biological potential for Mars will be dramatically enhanced. Liquid surface water also may have been present at the martian surface for a few hundred million years early in the planet's history. If surface life developed on Mars during this Earth-like period, it quite likely left behind a fossil record. Refrigeration is known to be an effective means for the preservation of organisms. Carl Sagan first suggested that microorganisms from an earlier period in martian history might still exist there today in a perpetually frozen state, preserved in ground ice. Could the same hold true for Jupiter's moon Europa? Measurements of the magnetic field of Europa, obtained during the Galileo mission, have strengthened arguments for the existence of a salty ocean lying beneath an exterior shell of water ice. It seems quite plausible that water welling up from below may carry organisms or their by-products. These materials would eventually freeze and become cryopreserved in ices at or near the surface.
Conclusion This article by NASA Astrobiology Institute is based on excerpts from the testimony of Jack D. Farmer, Director and Principal Investigator of the NASA funded Astrobiology Program at Arizona State University, for the "Life in the Universe" hearings before the House Subcommiteee on Space and Aeronautics Related Links NASA Astrobiology Institute SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express ![]() ![]() The "giant impact" theory, first proposed in the mid-1970s to explain how the Moon formed, has received a major boost as new results demonstrate for the first time that a single impact could yield the current Earth-Moon system. |
![]() |
|
|
|
|
|
|
|
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |