Subscribe free to our newsletters via your
. Earth Science News .




EARLY EARTH
Analysis of Marcellus flowback finds high levels of ancient brines
by Staff Writers
University Park, PA (SPX) Dec 21, 2012


The analysis shows that the brine flowback had extremely high salinity that does not match the chemical composition of the solution put into the wells during the fracking process. Instead, the elements being released are similar to those deposited during the Paleozoic era, hundreds of millions of years ago.

Brine water that flows back from gas wells in the Marcellus Shale region after hydraulic fracturing is many times more salty than seawater, with high contents of various elements, including radium and barium.

The chemistry is consistent with brines formed during the Paleozoic era, a study by an undergraduate student and two professors in Penn State's Department of Geosciences found.

The study indicates that the brine flowback elements found in high levels in the late stages of hydraulic fracturing come from the ancient brines rather than from salts dissolved by the water and chemicals used as part of the fracking process.

The paper by Lara O. Haluszczak, a Penn State student who has since graduated; professor emeritus Arthur W. Rose; and Lee R. Kump, professor and head of the Department of Geosciences, detailing those findings has been accepted for publication in Applied Geochemistry, the journal of the International Association of Geochemistry, and is available online.

For the study, the researchers analyzed data primarily from four sources: a report on brines from 40 conventional oil and gas wells in Pennsylvania; data on flowback waters from 22 Marcellus gas wells in Pennsylvania that the state Bureau of Oil and Gas Management had collected; flowback waters from two Marcellus gas wells from a previous study; and an industry study by the Marcellus Shale Coalition on flowback samples from eight horizontal wells that was reported in a Gas Technology Institute report.

Hydraulic fracturing, or fracking, is the process used to release natural gas from the shale formations deep underground. The process involves drilling down thousands of feet and, in the case of horizontal wells, sideways, then injecting a mixture of water, sand and chemicals to release the gas. The paper notes that about a quarter of the volume of fluid used for fracking returns to the surface, but with the brine as a major component.

The paper looked at fluids that flowed back within 90 days of fracking. The samples analyzed in the study come from wells in Pennsylvania, along with two from northern Virginia.

The analysis shows that the brine flowback had extremely high salinity that does not match the chemical composition of the solution put into the wells during the fracking process. Instead, the elements being released are similar to those deposited during the Paleozoic era, hundreds of millions of years ago.

Rose said the naturally occurring radioactive materials being brought to the surface after having been 8,000 feet deep were deposited with formations in that era. He noted that while much attention has been focused on the chemicals that are injected into the shale formation during the fracking process, also of concern is the release of elements such as barium and radium that have been in the ground for millions of years.

"Even if it's diluted quite a bit, it's still going to be above the drinking water limits," Rose said. "There's been very little research into this." Pennsylvania does have regulations on the disposal of fracking fluids. Rose said the findings highlight the importance of re-use and proper disposal of fracking fluids, including those from the later stages of drilling.

"Improper disposal of the flowback can lead to unsafe levels of these and other constituents in water, biota and sediment from wells and streams," the researchers noted.

"The high salinity and toxicity of these waters must be a key criterion in the technology for disposal of both the flowback waters and the continuing outflow of the production waters," the paper concludes.

.


Related Links
Penn State
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
ASU researchers propose new way to look at the dawn of life
Tempe AZ (SPX) Dec 18, 2012
One of the great mysteries of life is how it began. What physical process transformed a nonliving mix of chemicals into something as complex as a living cell? For more than a century, scientists have struggled to reconstruct the key first steps on the road to life. Until recently, their focus has been trained on how the simple building blocks of life might have been synthesized on the earl ... read more


EARLY EARTH
360,000 Haitians still displaced after 2010 quake: IOM

'Apocalypse Noah': Dutch Christian readies escape Ark

China arrests nearly 1,000 doomsday 'cult' members

Zuckerberg donates $500 mn to charity

EARLY EARTH
EU: Samsung injunctions against Apple breach rules

MEXSAT Bicentenario Satellite Sends First Signals from Space

JILA physicists achieve elusive 'evaporative cooling' of molecules

Sustainable way to make a prized fragrance ingredient

EARLY EARTH
Study reveals that animals contribute to seagrass dispersal

Slab of Barrier Reef sea floor breaking off: scientists

Study: Hawaiian island slowly dissolving

Environmental threat map highlights Great Lakes restoration challenges

EARLY EARTH
Chief's hunger strike fuels Canada aboriginal drive

Antarctic ice cores a window to the past

'Missing' polar weather systems could impact climate predictions

Top Officials Meet at ONR as Arctic Changes Quicken

EARLY EARTH
Hungary bans foreign farmland ownership

Curbing car travel could be as effective as cutting calories

Haiti farmers in dire straits after Hurricane Sandy

Soybeans a source of valuable chemical

EARLY EARTH
Philippines typhoon death toll 'likely to hit 1,500'

Climate model is first to study climate effects of Arctic hurricanes

Storms in the Machine

Russian volcano eruption ongoing

EARLY EARTH
Peacekeepers warn of potential catastrophe in Darfur

Outside View: Tunisia's path ahead

Gunmen attack military targets in I. Coast: army, UN

Kenyans brace for another violent election

EARLY EARTH
Scientists construct first map of how the brain organizes everything we see

Do palm trees hold the key to immortality?

Study: Human hands evolved as weapons

US shooting revives debate over videogame violence




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement