Subscribe free to our newsletters via your
. Earth Science News .




EARLY EARTH
Ancient minerals: Which gave rise to life?
by Staff Writers
Washington DC (SPX) Nov 27, 2013


The magnesium silicate forsterite was one of the most abundant minerals in the Hadean Eon, and it played a major role in Earth's near-surface processes. The green color of this mineral (which is also known as the semi-precious gemstone peridot, the birthstone of August) is caused by small amounts iron. The iron can react with seawater to promote chemical reactions that may have played a role in life's origins. Credit: Robert Downs, University of Arizona, Ruff Project.

Life originated as a result of natural processes that exploited early Earth's raw materials. Scientific models of life's origins almost always look to minerals for such essential tasks as the synthesis of life's molecular building blocks or the supply of metabolic energy. But this assumes that the mineral species found on Earth today are much the same as they were during Earth's first 550 million years-the Hadean Eon-when life emerged.

A new analysis of Hadean mineralogy challenges that assumption. It is published in American Journal of Science.

Carnegie's Robert Hazen compiled a list of every plausible mineral species on the Hadean Earth and concludes that no more than 420 different minerals-about 8 percent of the nearly 5,000 species found on Earth today-would have been present at or near Earth's surface.

"This is a consequence of the limited ways that minerals might have formed prior to 4 billion years ago," Hazen explained. "Most of the 420 minerals of the Hadean Eon formed from magma-molten rock that slowly crystallized at or near Earth's surface-as well as the alteration of those minerals when exposed to hot water."

By contrast, thousands of mineral species known today are the direct result of growth by living organisms, such as shells and bones, as well as life's chemical byproducts, such as oxygen from photosynthesis. In addition, hundreds of other minerals that incorporate relatively rare elements such as lithium, beryllium, and molybdenum appear to have taken a billion years or more to first appear because it is difficult to concentrate these elements sufficiently to form new minerals.

So those slow-forming minerals are also excluded from the time of life's origins.

"Fortunately for most origin-of-life models, the most commonly invoked minerals were present on early Earth," Hazen said.

For example, clay minerals-sometimes theorized by chemists to trigger interesting reactions-were certainly available. Sulfide minerals, including reactive iron and nickel varieties, were also widely available to catalyze organic reactions. However, borate and molybdate minerals, which are relatively rare even today, are unlikely to have occurred on the Hadean Earth and call into question origin models that rely on those mineral groups.

Several questions remain unanswered and offer opportunities for further study of the paleomineralogy of the Hadean Eon. For example, the Hadean Eon differs from today in the frequent large impacts of asteroids and comets-thousands of collisions by objects with diameters from a mile up to 100 miles.

Such impacts would have caused massive disruption of Earth's crust, with extensive fracture zones that were filled with hot circulating water. Such hydrothermal areas could have created complex zones with many exotic minerals.

This study also raises the question of how other planets and moons evolved mineralogically. Hazen suggests that Mars today may have progressed only as far as Earth's Hadean Eon. As such, Mars may be limited to a similar suite of no more than about 400 different mineral species. Thanks to the Curiosity rover, we may soon know if that's the case.

.


Related Links
Carnegie Institution
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Acid raid, ozone depletion contributed to ancient extinction
Washington DC (SPX) Nov 27, 2013
Around 250 million years ago, at the end of the Permian period, there was a mass extinction so severe that it remains the most traumatic known species die-off in Earth's history. Some researchers have suggested that this extinction was triggered by contemporaneous volcanic eruptions in Siberia. New results from a team including Director of Carnegie's Department of Terrestrial Magnetism Lin ... read more


EARLY EARTH
Typhoons spread Fukushima fallout, study warns

85 people injured in Hong Kong high-speed ferry accident

Philippines says Super Typhoon Haiyan, other storms curb growth

Mass vaccinations for children in typhoon-hit Philippines

EARLY EARTH
Use of ancient lead in modern physics experiments ignites debate

Crippled space telescope given second life, new mission

Scientists create perfect solution to iron out kinks in surfaces

What might recyclable satellites look like?

EARLY EARTH
Arctic seafloor methane releases double previous estimates

Sea level rise could exceed one meter in this century

China desert lake shrinks by one-third in 13 years: Xinhua

Sea level rise forecasts helped by insights into glacier melting

EARLY EARTH
'Noisy' glaciers sound off as they melt into ocean waters

Russian court frees last Greenpeace activist

Greenland's shrunken ice sheet: We've been here before

IceBridge at McMurdo: A Year and a Half of Planning

EARLY EARTH
Flower Power - Researchers breed new varieties of chamomile

A plant which acclimatizes with no exterior influence

Archaeologists discover largest, oldest wine cellar in Near East

Typhoon-hit Philippine farmers risk 'double tragedy': FAO

EARLY EARTH
Quake near Iran nuclear plant kills 8

2013 hurricane season said quietest since 1950

Indian cyclone weakens, 'no danger,' says weather office

18,000 Indonesians flee erupting volcano

EARLY EARTH
Several said dead in air raid in Sudan's Darfur: peacekeepers

Nigeria military says bombed Boko Haram camps

Mozambique police fire tear gas at anti-conscription protest

Chinese businessman charged in Zambia graft case

EARLY EARTH
Study suggests inbreeding shaped course of early human evolution

Investments in Aging Biology Research will Pay Longevity Dividend

Research team discovers 'immune gene' in Neanderthals

Ancient, modern DNA tell story of first humans in the Americas




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement