Subscribe free to our newsletters via your
. Earth Science News .




CLIMATE SCIENCE
More accurate model for greenhouse gases from peatlands developed
by Staff Writers
Argonne IL (SPX) Oct 08, 2014


Argonne researchers have announced a new model for the greenhouse gas emissions of peatlands.

Scientists at the U.S. Department of Energy's Argonne National Laboratory have created a new model to more accurately describe the greenhouse gases likely to be released from Arctic peatlands as they warm. Their findings, based on modeling how oxygen filters through soil, suggest that previous models probably underestimated methane emissions and overrepresented carbon dioxide emissions from these regions.

Peatlands, common in the Arctic, are wetlands filled with dead and decaying organic matter. They are the result of millions of years of plants dying and breaking down into rich soil, so they contain a massive amount of carbon.

"Peatlands cover about four percent of all land, but they hold 20 percent of all carbon stored on land," said Argonne scientist Zhaosheng Fan, who led the study.

Cold temperatures keep the carbon locked in the soil. As the ground warms, however, microbes come to life and begin to decompose all that organic matter, which releases carbon into the atmosphere.

Unfortunately, the extreme northern regions of the world are where warming has accelerated the most quickly-and it's expected to pick up in the future. Scientists are concerned that Arctic warming could spiral quickly into a self-reinforcing cycle that dumps an enormous amount of carbon into the atmosphere.

Scientists create complex models to estimate how this might unfold, combining data taken on the ground with varying emissions scenarios to forecast climate change far into the future.

One area of particular interest is which form of carbon will be released. Microbes can create either CO2 or methane, and each gas has different effects on the atmosphere. CO2 is a long-lived greenhouse gas, staying in the atmosphere for up to a century or more.

Methane delivers a powerful punch-its impact is about 20 times greater than CO2-but filters out of the atmosphere in about 12 years. Accurately predicting how much of each gas will be released, therefore, is important.

Down in the ground, the conditions that microbes find themselves in will affect what form of carbon they release. If there's a lot of oxygen and water available, microbes will only produce CO2. If there isn't enough oxygen, they will produce methane and CO2.

Up until now, researchers had been using a simple model that assumed water was the primary divider; soil above the water table would produce microbes that made CO2, and microbes below would produce methane.

"But experiments had been showing that there could be significant limits on oxygen availability above the water table, and this would affect what form of carbon microbes release," Fan said.

The size and characteristics of soil particles matter. If the oxygen gets trapped in air bubbles and consumed by other microbes or can't filter down through soil, soil microbes will produce methane even if they're above the water table.

"So we set out to make a model that would take these findings into account," Fan said.

The team used experimental data from peatland taken near Fairbanks, Alaska and plugged it into their model. The results showed their new model was much more accurate and suggested that more methane is produced and proportionally less CO2-than predicted by older water table-based models.

"Revising this calculation will substantially affect current greenhouse gas production models in the Arctic," Fan said.

Next, Fan said, they are looking into adding other soil characteristics, such as nutrients like nitrogen, into the model to see how they might affect microbe output.

.


Related Links
Argonne National Laboratory
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CLIMATE SCIENCE
Greenland Ice Sheet's meltwater channels studied
Los Alamos NM (SPX) Oct 03, 2014
An international research team's field work, drilling and measuring melt rates and ice sheet movement in Greenland is showing that things are, in fact, more complicated than we thought. "Although the Greenland Ice Sheet initially speeds up each summer in its slow-motion race to the sea, the network of meltwater channels beneath the sheet is not necessarily forming the slushy racetrack that ... read more


CLIMATE SCIENCE
In Nobel season, laureates fret for sickly Earth

Pakistan bars relief goods to flood-hit Indian Kashmir

Predicting landslides with light

Japan, Mexico to join UN peacekeeping

CLIMATE SCIENCE
3D printer makes bionic hand for 5-year-old girl

Fed Up With Federal Inaction, States Act Alone on Cap-and-Trade

Czechs preparing international tender for air defense radar

How to make stronger, 'greener' cement

CLIMATE SCIENCE
Smithsonian scientists discover coral's best defender against an army of sea stars

Modi wields broom in new 'Clean India' push

Asian carp DNA detected in Lake Michigan tributary

Divers capture remarkable images of underwater mountains near the Canary Islands

CLIMATE SCIENCE
Changing Antarctic waters could trigger steep rise in sea levels

Plumbing system beneath Greenland slows ice sheet as summer progresses

Flight ban to protect baby walruses beached in Alaska

New mechanism reveals how molecules become trapped in ice

CLIMATE SCIENCE
Ivory Coast buoyed by record agricultural harvest

The Shebaa Farms, a tug-of-war Mideast conflict zone

Natural gene selection can produce orange corn rich in provitamin A for Africa, U.S.

No sign of health or nutrition problems from GMO livestock feed

CLIMATE SCIENCE
Two more dead found on Japan volcano

US military officials feared dead as typhoon slams into Japan

Strong 6.0-magnitude quake hits China's Yunnan province

Japan typhoon death toll rises to six: reports

CLIMATE SCIENCE
Obama maintains child soldier sanctions against Myanmar

C.Africa president calls for lifting UN arms embargo

Whistleblower phone app seeks to outsmart corruption

Gunmen kidnap Chinese national in central Nigeria: police

CLIMATE SCIENCE
Protected caves in Oregon change ideas of early Americans

Scientists are closer to understanding human height

DNA analysis suggests humanity has more mothers than fathers

Curiosity helps the brain acquire new information




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.