![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Panama City, Panama (SPX) Feb 04, 2016
How fast tropical forests recover after deforestation has major consequences for climate change mitigation. A team including Smithsonian scientists discovered that some secondary tropical forests recover biomass quickly: half of the forests in the study attained 90 percent of old-growth forest levels in 66 years or less. Conservation planners can use their resulting biomass-recovery map for Latin America to prioritize conservation efforts. "Regenerating secondary forests could play a critical role in carbon sequestration and climate change mitigation" said Daisy Dent, a research associate at the Smithsonian Tropical Research Institute (STRI) in Panama and a lecturer at the University of Stirling. "However, previous studies have tended to focus on single sites. This study brings together data from many sites that span the Neotropics. We illustrate that secondary forests are highly productive and resilient." Less than half of the world's tropical forests are primary or old-growth forests; the rest are growing back after logging or other disturbances. The new study focused on secondary forests growing back on land almost completely deforested for agriculture. Although such forests are known to accumulate carbon rapidly, how quickly they recover and restore the ecosystem services provided by old-growth forest was uncertain because of inconsistencies in the methods used in previous studies. This study was unprecedented in scope: 45 sites in eight countries, 1,478 study plots and more than 168,000 trees. Sites covered the full latitudinal range of the tropics, from 20 degrees north in Mexico to 22 degrees south in Brazil, and extended across areas of high-to-low rainfall and low-to-high soil fertility. The extent of forest cover in the surrounding landscape (indicating the availability of tree seeds for regeneration) and the intensity of prior land use was also considered. After 20 years of recovery, the average biomass in these regenerating forests was calculated to be equivalent to a carbon uptake rate 11 times that of Amazonian old-growth forests, and more than twice that of selectively logged Amazonian forests in which reduced-impact logging techniques had been used. However, biomass accumulation rates differed widely across sites. Sites with higher rainfall had higher absolute rates of biomass accumulation. Soil fertility, local forest cover and prior land-use were not found to have an effect. However, higher soil fertility did improve the relative rate of biomass accumulation compared to old-growth forests in the same area. The authors produced a map of the potential for biomass recovery and carbon sequestration across the New World tropics. Areas such as the dry forests of Mexico and northeastern Brazil had low recovery rates, whereas the moister forests of Central America and large parts of Amazonia had high recovery rates. In moist forest areas, where potential for biomass accumulation is highest, restoration and reforestation may be the optimal land-use activities. Where the capacity of forest recovery is lower, such as seasonally dry forest, a higher emphasis should be placed on protection of existing forest to minimize forest loss. "Collaborations like the one illustrated here by the 2ndFor Network, in which site-based monitoring and manipulations allow us to test mechanistic hypotheses related to forest development, and large-scale analysis across sites allow for robust synthesis, are critically important in the era of global change," said Jefferson Hall, STRI staff scientist and director of the Agua Salud Project in the Panama Canal Watershed. Biomass resilience of Neotropical secondary forests. 2016. Poorter, L., Bongers, F., Aide, T. et al. Nature doi:10.1038/nature16512
Related Links Smithsonian Tropical Research Institute Forestry News - Global and Local News, Science and Application
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |