![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Lausanne, Switzerland (SPX) Mar 19, 2019
An EPFL study has prompted scientists to rethink a standard approach used to calculate the velocity of gas exchange between mountain streams and the atmosphere. Research conducted in streams in Vaud and Valais indicate that equations used to predict gas exchange based on data from lowland streams undershoots the actual gas exchange velocity in mountain streams on average by a factor of 100. This discovery - appearing in Nature Geoscience - will enable scientists to develop more accurate models of the role that mountain streams play in global biogeochemical fluxes. Considering that more than 30% of the Earth's surface is covered by mountains, the ramifications of this discovery are considerable. The study was conducted at EPFL's Stream Biofilm and Ecosystem Research Laboratory (SBER), within the School of Architecture, Civil and Environmental Engineering (ENAC).
More turbulence Because mountain streams often flow over steep drops and rugged terrain, this creates a lot of turbulence and causes air bubbles to be trapped in the water, appearing white (aka 'white water'). These bubbles accelerate the gas exchange. Strikingly, the same mechanism is at work when white-capped waves appear on the surface of rough seas. Until now, scientists have ignored the contribution from air bubbles and have used the same approach to calculate gas exchange velocities in mountain streams than in calm lowland streams.
More precise calculations To measure gas exchange velocity as accurately as possible, one of the SBER scientists and first author of the study - Amber Ulseth - along with others, added small amounts of argon as a tracer gas to the streams. Argon is a naturally occurring gas that is harmless to aquatic ecosystems. Using cutting-edge analytical methods in the laboratory, Amber Ulseth and colleagues were able to quantify loss of argon from the streamwater. Next, they modeled the gas exchange velocity from the downstream loss of the tracer gas in the streamwater. Their results reveal that the gas exchange velocity in mountain streams is on average 100 times higher than predicted from equations developed from similar tracer gas experiments in low-land streams.
Major implications His lab is already looking into extensions of this research, such as developing a new model to predict CO2 emissions from mountain streams worldwide.
![]() ![]() Millions hit in Manila's 'worst' water shortage Manila (AFP) March 15, 2019 Manila has been hit by its worst water shortage in years, leaving bucket-bearing families to wait hours to fill up from tanker trucks and some hospitals to turn away less urgent cases. Taps are dry from four to 20 hours per day in the homes of about half of the Philippine capital's roughly 12 million people due to rolling outages driven by a dearth of rain and inadequate infrastructure. "I have learned to take a bath using only seven pitchers of water," Ricardo Bergado told AFP as he lined up wi ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |