Subscribe free to our newsletters via your
. Earth Science News .




EARLY EARTH
Gardener's delight offers glimpse into the evolution of flowering plants
by Staff Writers
Seattle WA (SPX) Sep 06, 2012


Wild-type Thalictrum used in the study have blossoms with stamens, carpels and other organs for sexual reproduction and seed making. Credit: Di Stilio Lab/U of Washington.

The Pink Double Dandy peony, the Double Peppermint petunia, the Doubled Strawberry Vanilla lily and nearly all roses are varieties cultivated for their double flowers. The blossoms of these and other such plants are lush with extra petals in place of the parts of the flower needed for sexual reproduction and seed production, meaning double flowers - though beautiful - are mutants and usually sterile.

The genetic interruption that causes that mutation helped scientists in the 1990s pinpoint the genes responsible for normal development of sexual organs stamens and carpels in the plant Arabidopsis thaliana, long used as a plant model by biologists.

Now for the first time, scientists have proved the same class of genes is at work in a representative of a more ancient plant lineage, offering a glimpse further back into the evolutionary development of flowers.

"It's pretty amazing that Arabidopsis and Thalictrum, the plant we studied, have genes that do the exact same kind of things in spite of the millions of years of evolution that separates the two species," said Veronica Di Stilio, University of Washington associate professor of biology. She is the corresponding author of a paper published in the Proceedings of the National Academy of Sciences.

The function of these organ-identity genes appears to be highly conserved according to the new research, meaning the gene is essential and its function has been maintained despite the formation of new species.

Identifying the genetic and biochemical basis of double flowering in Thalictrum suggests the class of genes that likely underlie other widespread double-flower varieties, according to Kelsey Galimba, a UW doctoral student in the Di Stilio lab and lead author of the paper.

"Growers might be interested that we've figured out what's going on genetically. In terms of applications, you could potentially trigger this if you were interested in creating double flowers because you know which gene to treat to get that flower form," Di Stilio said.

Di Stilio's group studied Thalictrum thalictroides. Known in the nursery trade as Anemonella thalictroides and rue anemone, the spring-flowering plant is native to the woods of Northeastern U.S. It belongs to the family Ranunculaceae, a sister lineage of the Eudicots. Eudicots today include 70 percent of all flowering species.

"The plants we've chosen to study possess ancestral floral traits and are sister to the core Eudicots that have model plants used by biologists such as Arabidopsis thaliana and Antirrhinum majus, or snapdragon," Di Stilio said. "But the plants in our study belong to a more ancient lineage. We're interested in evolution of flowers so we want to look at something that is a little bit different, that might inform us about how development has been tweaked over time to produce change."

The scientists compared the class of genes that direct the development of certain sexual reproduction organs in wild-type Thalictrum with that of the cultivated double-flower version known as Double White.

In the mutant, Galimba spotted part of a transposon, jumping genes that can move about the organism's genome, sitting in the gene that affects development of reproductive organs. The protein produced by the mutant gene lacks some of the amino acids found in wild-type plants and the scientists hypothesize that it's not the right length to interact with other proteins normally, Galimba said.

The researchers then did a second check on the findings by using a technique called viral induced gene silencing to knock down the properly functioning gene in a wild-type plant. The resulting blossom looked very similar to the Double White mutant.

"The flower is one of the key innovations of flowering plants. It allowed flowering plants to coevolve with pollinators - mainly insects, but other animals as well - and use those pollinators for reproduction," Di Stilio said. "Many scientists are interested in finding the genetic underpinnings of flower diversification. Just how flowering plants become so species rich in such a relatively short period of geologic time has been a question since Darwin."

The work was funded by the National Science Foundation, including a research experience for undergraduate fellowship for co-author Theadora Tolkin, now a doctoral student at New York University. Other co-authors are Alessandra Sullivan, former Di Stilio lab member and current UW doctoral student; and collaborators Rainer Melzer and Gunter Theiben with Friedrich Schiller University in Germany. Abstract of PNAS Plus paper

.


Related Links
UW biology department
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Feathered dinosaur feasts on flying food
Edmonton, Canada (SPX) Aug 31, 2012
University of Alberta researchers found evidence that a feathered, but flightless dinosaur was able to snag and consume small flying dinosaurs. The U of A paleontology team found the fossilized remains of three flying dinosaurs in the belly of a raptor-like predator called Sinocalliopteryx. Sinocalliopteryx was about two meters in length and roughly the size of a modern-day wolf. Sinocalli ... read more


EARLY EARTH
25 killed in ammunition depot blast in western Turkey: army

Two slightly injured in accident at French nuclear plant

Congo, China, sign 975m-euro deal to rebuild Brazzaville

Obama hails govt response to Isaac 'devastation'

EARLY EARTH
Amazon takes on iPad with new Kindle Fire tablet

US judge OKs partial settlement in e-book case

Empire-style computers? Frenchman takes PCs to lap of luxury

Google-Microsoft field smartphones to take on iPhone 5

EARLY EARTH
Concern about plans to close unique Canadian environmental project

Coastline erosion due to rise in sea level greater than previously thought

Human Impact Felt on Black Sea Long Before Industrial Era

Cathay bans shark fin from cargo flights

EARLY EARTH
Glacial thinning has sharply accelerated at major South American icefields

Russia charges Greenpeace activists in polar bear protest

Russia's unique economic position in the Arctic

Major world interests at stake in Canada's vast Mackenzie River Basin

EARLY EARTH
US fruit giant Dole settles 38 pesticide complaints

Spinach power gets a big boost

Bees, fruits and money

Little evidence of health benefits from organic foods

EARLY EARTH
Mount Fuji 'under more pressure than last eruption'

Huge quake jolts Costa Rica, one killed

Leslie becomes a hurricane in Atlantic: US forecasters

Sixty-eight people die in Niger floods since July

EARLY EARTH
Nigeria trains more peacekeeping troops

Kenya readies Somali Kismayo attack

Rebel chief returns to Chad after surrender

Weapons destined for Mali held up in Guinea since July

EARLY EARTH
Yale team finds order amidst the chaos within the human genome

Benign malaria key driver of human evolution in Asia-Pacific

DNA of ancient human decoded

Electronics, living tissue, merged in lab




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement