![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Baton Rouge LA (SPX) Jun 12, 2018
Scientists have predicted the dead zone, or area with little to no oxygen in the northern Gulf of Mexico, will become larger than the state of Connecticut by the end of July. The dead zone will cover about 6,620 square miles of the bottom of the continental shelf off Louisiana and Texas. While there are more than 500 dead zones around the world, the northern Gulf of Mexico dead zone is the second largest human-caused coastal hypoxic area in the world. Although this forecast has been the average size for the past 31 years, it is about three and a half times larger than the goal outlined by the Hypoxia Action Plan, which is about 1,930 square miles. Efforts to reduce the nitrate loading have not yet demonstrated success at the watershed scale. Every year LSU Department of Oceanography and Coastal Sciences professors and Louisiana Universities Marine Consortium scientists Nancy Rabalais and Eugene Turner conduct a research cruise to measure the dead zone, which has little or no oxygen in the bottom waters. Turner and Rabalais then use these data in their computer models to predict its size in the summer. The new report and forecast will be available June 7. "The oceans warm a little more each year and currents change, making new observations a necessity. Model calibration is not a fixed phenomenon," Turner said. Nutrients from the Mississippi River watershed, particularly nitrogen and phosphorus, fertilize the Gulf of Mexico's surface waters to create excessive amounts of algae. When the algae decomposes in the deepest parts of the ocean, it leads to oxygen distress and can even kill organisms in the Gulf of Mexico's richest waters. These low oxygen conditions threaten living resources including fish, shrimp and crabs, which humans depend upon for food and industry. "This means that the impacts of water quality changes upstream in the Midwest affect our coast - directly," Rabalais said. The dead zone occurs year-round, but it is most persistent and severe in spring and summer. Various computer models use the May nitrogen load of the Mississippi River as the main driving force to predict the size of this hypoxic zone in late July. If a storm occurs, then the size of the dead zone is predicted to be reduced to about 6,316 square miles. The National Oceanic and Atmospheric Administration uses the results from the LSU scientists' computer models as well as several other models to generate its forecast, which is about 5,830 square miles. For more information, the extended prediction document is available here
![]() ![]() Coral tricks for adapting to ocean acidification Thuwal, Saudi Arabia (SPX) Jun 11, 2018 A process that changes the regulation of genes could help corals acclimatize to the impacts of global warming. Cells commonly control gene expression by adding a methyl group to part of the DNA, changing how the information on the DNA is read without changing its genetic code. Researchers at KAUST wanted to investigate whether DNA methylation could play a role in helping corals adapt to climate change. They placed colonies of the smooth cauliflower coral, Stylophora pistillata, in seawater a ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |