|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Minneapolis MN (SPX) Mar 12, 2014
Two wrongs may not make a right. But when it comes to grassland plant species diversity, it just might. Two impacts often controlled by humans - being fertilized and being eaten - can combine to the benefit of biodiversity, according to an innovative international study led by U of M researchers Elizabeth Borer and Eric Seabloom. The findings, published in the online edition of Nature in advance of print publication, are important in a world where humans are changing both herbivore distribution and the supply of nutrients like nitrogen or phosphorus, and where understanding the interplay among nutrients, herbivores and plant growth is critical to our capacity to feed a growing human population and protect threatened species and ecosystems. To conduct the study, Borer and Seabloom enlisted the help of the Nutrient Network, or NutNet, a collaborative international experiment they and a few colleagues founded in 2005 as a resource for understanding how grasslands around the world will respond to a changing environment. NutNet scientists at 40 sites on six continents set up research plots with and without added fertilizer and with and without fences to keep out the local herbivores such as deer, kangaroos, sheep or zebras. Every year since then, they have measured the amount of plant material grown, light reaching the ground, and number of species of plants growing in the plots. When the researchers compared data across the 40 study sites, they found that fertilizing reduced the number of plant species in the plots as species less able to tolerate a lack of light were literally overshadowed by fast-growing neighbors. On both fertilized and unfertilized plots, where removal of vegetation by herbivores increased the amount of light that struck the ground, plant species diversity increased. And these results held true whether the grassland was in Minnesota, Argentina or China, and whether the herbivores involved were rabbits, sheep, elephants or something else. "Biodiversity benefits humans and the environments that sustain us. Understanding how human actions control biodiversity is important for maintaining a healthy environment," says Borer. "What this suggests is that these two impacts, which are ubiquitous globally, dovetail with changes in light availability at the ground level, and that appears to be a big factor in maintaining or losing biodiversity in grasslands. In short, where we see a change in light, we see a change in diversity." The findings add a key piece to the puzzle of how human impacts affect prairies, savannas, alpine meadows and other grasslands. Biodiversity plays an important role in how resilient communities of plants and animals are in the face of change. By showing how fertilization, grazing, and biodiversity are linked, the research moves us one step closer to understanding what we can do to help keep grassland ecosystems and all of the services they provide healthy and thriving in a changing world. "Global patterns of biodiversity have largely defied explanation due to many interacting, local driving forces," says Henry Gholz, program director in the National Science Foundation's (NSF) Division of Environmental Biology, which funded the coordination of this research. "These results show that grassland biodiversity is likely largely determined by the offsetting influences of nutrition and grazing on light capture by plants." Yann Hautier, a Marie Curie Fellow associated with both the Department of Ecology, Evolution, and Behavior at the University of Minnesota and the Institute of Evolutionary Biology and Environmental Studies at the University of Zurich and U of M research scientist Eric Lind were co-authors of the study along with researchers from universities and government agencies around the world.
Related Links University of Minnesota Darwin Today At TerraDaily.com
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |