|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Munich, Germany (SPX) Apr 24, 2014
A novel imaging technique provides insights into the role of redox signaling and reactive oxygen species in living neurons, in real time. Scientists of the Technische Universitat Munchen (TUM) and the Ludwig-Maximilians-Universitat Munchen (LMU) have developed a new optical microscopy technique to unravel the role of "oxidative stress" in healthy as well as injured nervous systems. The work is reported in the latest issue of Nature Medicine. Reactive oxygen species are important intracellular signaling molecules, but their mode of action is complex: In low concentrations they regulate key aspects of cellular function and behavior, while at high concentrations they can cause "oxidative stress", which damages organelles, membranes and DNA. To analyze how redox signaling unfolds in single cells and organelles in real-time, an innovative optical microscopy technique has been developed jointly by the teams of LMU Professor Martin Kerschensteiner and TUM Professor Thomas Misgeld, both investigators of the Munich Cluster for Systems Neurology (SyNergy). "Our new optical approach allows us to visualize the redox state of important cellular organelles, mitochondria, in real time in living tissue" Kerschensteiner says. Mitochondria are the cell's power plants, which convert nutrients into usable energy. In earlier studies, Kerschensteiner and Misgeld had obtained evidence that oxidative damage of mitochondria might contribute to the destruction of axons in inflammatory diseases such as multiple sclerosis. The new method allows them to record the oxidation states of individual mitochondria with high spatial and temporal resolution. Kerschensteiner explains the motivation behind the development of the technique: "Redox signals have important physiological functions, but can also cause damage, for example when present in high concentrations around immune cells."
First surprises The researchers have applied the technique to two experimental models, and have arrived at some unexpected insights. On the one hand, they have been able, for the first time, to study redox signal induction in response to neural damage - in this case, spinal cord injury - in the mammalian nervous system. The observations revealed that severance of an axon results in a wave of oxidation of the mitochondria, which begins at the site of damage and is propagated along the fiber. Furthermore, an influx of calcium at the site of axonal resection was shown to be essential for the ensuing functional damage to mitochondria. Perhaps the most surprising outcome of the new study was that the study's first author, graduate student Michael Breckwoldt, was able to image, also for the first time, spontaneous contractions of mitochondria that are accompanied by a rapid shift in the redox state of the organelle. As Misgeld explains, "This appears to be a fail-safe system that is activated in response to stress and temporarily attenuates mitochondrial activity. Under pathological conditions, the contractions are more prolonged and may become irreversible, and this can ultimately result in irreparable damage to the nerve process." Michael O. Breckwoldt, Franz Pfister, Peter M. Bradley, Petar Marinkovic, Philip R. Williams, Monika S. Brill, Barbara Plomer, Anja Schmalz, Daret K. St. Clair, Ronald Naumann, Oliver Griesbeck, Markus Schwarzlander, Leanne Godinho, Florence M. Bareyre, Tobias P. Dick, Martin Kerschensteiner and Thomas Misgeld, Multi-parametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology, Nature Medicine (2014). DOI: 10.1038/nm.3520
Related Links Technische Universitat Munchen Darwin Today At TerraDaily.com
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |